CMB heat flux: local negative patches and hints from seismic tomography

Frédéric Deschamps, Joshua Guerrero, Sheng-An Shih, Hagay Amit, Gaël Choblet

Motivations

- ▶ Heat flux at core-mantle boundary (CMB), $\Phi_{\text{CMB}} = \text{kdT/dr}$, and its variations (spatial and temporal) impact core dynamics.
- ▶ Seismic tomography: strong variations in shear wave velocity at the bottom of the mantle, suggesting lateral changes in chemistry and temperature, and thus in heat flux.

LLSVPs: hotter and chemically differentiated regions beneath Africa and the Pacific.

- ▶ No direct measurements of CMB heat flux. Need to access temperature gradient and its spatial variations.
- ▶ Temperature changes may be inferred from seismic tomography, but seismic velocity anomalies are unlikely purely thermal in origin.

Constraints from simulations of mantle convection

- ▶ Model CMB heat flux with simulations of thermo-chemical convection.
- Amplitude in heat flux variations.
- Heat flux beneath piles of dense material (modeling LLSVPs).
- Spatial and temporal variations depending on input parameters (e.g., temperature-dependent thermal conductivity, excess heating in piles).

- ▶ Mapping CMB heat flux from thermo-chemical structure deduced from simulations of mantle convection.
- Simulations of convection predict temperature, phase (post-perovskite), and compositional fields.
- Calculate synthetic velocity anomalies (dlnV_S) and heat flux (Q_{CMB}) from these fields.
- Infer relationship between synthetic dlnV_S and Q_{CMB}.

Spatial and temporal variations

• Patches of negative heat flux may locally appear within piles of dense material located at the bottom of (Guerrero et al., Solid Earth, 2023).

• Here, we investigate the conditions needed for generating such patches of negative heat flux, using simulations of thermo-chemical convection with StagYY.

Modeling and setup

- Simulation of thermo-chemical convection with StagYY (Tackley, 2014):
- Spherical annulus geometry with core/total radii ratio f = 0.55.
- Grid resolution: 2048×256 points, with refinement at top and bottom.
- Composition : volume fraction of dense material is set to $x_{prim} = 4.0 \%$ and buoyancy ratio to B = 0.23 (corresponding to density excess ~ 140 kg/m³). Dense material, is initially distributed in a basal layer.
- Viscosity depends on temperature, pressure (with an additional viscosity ratio $\Delta \eta$ = 30 at 660 km) and composition. Yield stress ($\sigma_{\rm Y}$) is imposed to avoid formation of a stagnant lid :

$$\eta = \frac{\eta_b \eta_Y}{(\eta_b + \eta_Y)} \quad \text{with}$$
and
$$\eta_b(z, T, C) = \eta_0 \left[1 + 29H(z - 660) \right] \exp \left[V_a \frac{z}{D} + E_a \frac{\Delta T_S}{(T + T_{\text{off}})} + K_a C \right]$$

with E_a = 16.118 (corresponding to viscosity ratio of 10⁷) from top to surface temperature, V_a = 2.303 (top-to-bottom viscosity ratio of 10), and K_a = 30 (dense material is 30 times more viscous than regular material).

• Internal heating rate R_H : dense material is assumed to have excess heating compared to regular material, controlled with ratio dH_{prim} . R_H is then given by :

$$R_{H} = \frac{H_{mantle}}{\left[1 + x_{prim}(dH_{prim} - 1)\right]}$$

In practice, $R_{\rm H}$ is chosen such that the total heating, $H_{\rm mantle}$, is equal to 11 TW, consistent with Earth energy budget estimates (Jaupart et al., 2015) and corresponding to a heat flux of 21.6 mW/m² at the surface.

Modeling thermal conductivity

- Thermal conductivity depends on depth (pressure), temperature and composition as in Guerrero et al., *Solid Earth* (2023) and *EPSL* (2024):
- Depth dependence: follows mineral physics data for olivine (UM; Chang et al., 2017) and bridgmanite and ferro-periclase (LM; Hsieh et al., 2017, 2018). This is equivalent to an intrinsic top-to-bottom increase of ~ 27 (at 300 K and excluding adiabatic effect), and ~ 9 along a 2000 K adiabat.
- Temperature dependence : conductivity decreases with increasing temperature as $1/T^a$. We explored values of a in the range 0.0 < a < 1.0.

For lower mantle minerals, experimental data suggest *a* in the range 0.2-0.4.

- Compositional dependence : dense material conductivity is assumed to be 20 % lower than regular material conductivity. This accounts for the presence of material enriched in iron by ~ 4 % in LLSVPs (Deschamps and Hsieh, GJI, 2019).

Simulations of thermo-chemical convection

- Formation of hot piles of dense material at the CMB.
- Plumes are being generated at the top of these piles.
- Piles are thermally less conductive than surrounding mantle.

Varying a and dH_{prim} : temperature fields

Conditions for generating patches of negative heat flux

- Negative heat flux patches appear for temperature exponent a > 0.1 and excess heating $dH_{prim} \ge 2$.
- Threshold value of dH_{prim} increases with decreasing temperature-dependence (lower a).
- For weak temperature dependence (low a), patches disappear again at high dH_{prim}.

CMB heat flux variations and piles topography

• Patches of negative heat flux appear well within piles interiors (not at their edges), where topography is highest.

Power flowing to the core

• The power flowing to the core increases with a. It also increases with excess heating but only up to some given value of the $(dH_{prim} \sim 15)$, and then starts decreasing again.

• Piles temperature increases with excess heating, but heating rate elsewhere in the mantle decreases.

As a result, plumes generated at the top of piles are stronger and extract more heat from piles.

Average CMB heat flux

- Average CMB heat flux (<Q>) decreases with increasing temperature-dependence of conductivity (increasing a), and overall independent of excess heating in piles.
- For 0.2 < a < 0.8, <Q> is consistent with estimated CMB total power (5-17 TW).

Consequence for core dynamics and evolution: q*

• Heat flux heterogeneity $q^* = \frac{(Q_{max} - Q_{min})}{2(Q_{avg} - Q_{adia}^{core})}$

 $= \frac{(Q_{max} - Q_{min})}{2(Q_{avg} - Q_{adia}^{core})} \qquad \begin{array}{l} Q_{adia}^{core} \text{ is set to 24 mW/m}^2, \text{ assuming k}_{core} = \\ 40 \text{ W/m/K and (dT/dz)}_{adia} = 0.6 \text{ K/km} \end{array}$

Higher q* favor magnetic field polarity reversals (e.g., Terra-Nova and Amit, 2024).

• Time-averaged q* increases with temperature dependence of conductivity (increasing *a*): stronger temperature-dependence should promote magnetic reversals.

Time variations in q*

• Time variability of q^* is important (> 0.5) and larger for higher temperature-dependence of conductivity (> 1 for a = 0.5).

• May explain geomagnetic superchrones (low q* periods) and hyper-frequency reversals (high q* periods).

Patches of negative CMB heat flux

▶ Appearance:

- Need temperature-dependent thermal conductivity.
- Need excess internal heating in piles of dense material.

▶ Location:

- Appear in piles interior, not at their edges.
- Good correlation with piles' height.

▶ Strength:

- Total power in patches (flowing to the core) increases with sensitivity of conductivity to temperature.
- Total power reaches a maximum value for some value of excess heating.

▶ Consequence for core dynamics:

- q* value and temporal variability increase with sensitivity of conductivity to temperature.
- May play a role in the frequency of magnetic field polarity reversals.

Mapped CMB heat flux

• Mappings can be applied to available seismic tomography (e.g., Houser et al., 2008) to recover Earth's CMB heat flux.

- Low heat flux anomalies beneath LLSVPs are attenuated, while large heat flux patches are enhanced.
- The presence of pPv further attenuates the low heat flux anomalies within LLSVPs

Dans les épisodes précédents ...

Simulations of thermo-chemical convection

Mapping CMB heat flux from seismic velocities

• Simulations of thermo-chemical convection : temperature, phase (post-perovskite) and compositional fields.

 Calculate seismic shear velocity anomalies averaged in the bottom 200 km ...

• ... and CMB heat flux (~ dT).

Choblet et al., submitted to PEPI

Mapping CMB heat flux from seismic velocities

• Determine synthetic relationships (mappings) between seismic velocities and heat flux.

$$q = \frac{cv_T}{1 - v_T + c}$$

 $v_{\rm T}$: normalized thermal component of velocity anomaly.

Mapped CMB heat flux

Tomographic models

Finding 3 populations in Vs-tomography

- Fit Vs frequency histograms with 3 Gaussian, representing 3 different populations.
- Boundaries between populations : set at fractions of standard deviations in each Gaussian.

Population distribution from GLAD-M35 (alternate)

- Population percentage calculated for each given dlnVs, using the fitted three Gaussian distributions.
- Vertical lines indicate the positions where any of the population percentages equals to 90%.
- Tails at high dlnVs in GLAD-M35 are due to the much slower decay rate of G1 compared to G3. This is an artifact of the method, that we should just ignore.

GLAD-M35 (depth 2800 km)

Population distribution from SEMUCB-WM1

- Population percentage calculated for each given dlnVs, using the fitted three Gaussian distributions.
- Vertical lines indicate the positions where any of the population percentages equals to 90%.

CMB heat flux from GLAD-M35

Max/min (red dashed lines) are from dlnVs. Boundaries of delimiters are defined as
 0.8 standard deviation from the mean of each group.

CMB heat flux from SEMUCB-WM1

Max/min (red dashed lines) are from dlnVs. Boundaries of delimiters are defined as
 0.8 standard deviation from the mean of each group.

Mapping CMB heat flux

- ▶ Still in progress, but encouraging:
- Can distinguish 3 populations from shear-velocity frequency histograms.
- Conversion to heat flux: saturation issue. Should we use original Q-Vs parameterization or modify it ?