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Motivations
 Heat flux at core-mantle boundary (CMB), ΦCMB = kdT/dr, and its variations
(spatial and temporal) impact core dynamics.

 No direct measurements of CMB heat flux. Need to access temperature gradient
and its spatial variations.

 Seismic tomography: strong variations in shear wave velocity at the bottom of the
mantle, suggesting lateral changes in chemistry and temperature, and thus in heat flux.
LLSVPs : hotter and chemically differentiated regions beneath Africa and the Pacific.

HMSL-S, Houser et al. (2008)
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 Temperature changes may be inferred from seismic tomography, but seismic
velocity anomalies are unlikely purely thermal in origin.



 Mapping CMB heat flux from thermo-chemical structure deduced from
simulations of mantle convection.
- Simulations of convection predict temperature, phase (post-perovskite), and compositional fields.
- Calculate synthetic velocity anomalies (dlnVS) and heat flux (QCMB) from these fields.
- Infer relationship between synthetic dlnVS and QCMB.

 Model CMB heat flux with simulations of thermo-chemical convection.
- Amplitude in heat flux variations.
- Heat flux beneath piles of dense material (modeling LLSVPs).
- Spatial and temporal variations depending on input parameters (e.g., temperature-dependent
thermal conductivity, excess heating in piles).

Constraints from simulations of 
mantle convection



Spatial and temporal variations 
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 Here, we investigate the conditions needed for generating such patches of
negative heat flux, using simulations of thermo-chemical convection with StagYY.

 Patches of negative heat flux may locally appear within piles of dense material
located at the bottom of (Guerrero et al., Solid Earth, 2023).



Modeling and setup 
 Simulation of thermo-chemical convection with StagYY (Tackley, 2014):
- Spherical annulus geometry with core/total radii ratio f = 0.55.

- Grid resolution : 2048×256 points, with refinement at top and bottom.

- Composition : volume fraction of dense material is set to xprim = 4.0 % and buoyancy ratio to B = 0.23
(corresponding to density excess ~ 140 kg/m3). Dense material, is initially distributed in a basal layer.

- Viscosity depends on temperature, pressure (with an additional viscosity ratio ∆η = 30 at 660 km) and composition.
Yield stress (σY) is imposed to avoid formation of a stagnant lid :

In practice, RH is chosen such that the total heating, Hmantle, is equal to 11 TW, consistent with Earth energy
budget estimates (Jaupart et al., 2015) and corresponding to a heat flux of 21.6 mW/m2 at the surface.

𝑅𝑅𝐻𝐻 =
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1

 Internal heating rate RH: dense material is assumed to have excess heating
compared to regular material, controlled with ratio dHprim. RH is then given by :

𝜂𝜂𝑏𝑏 𝑧𝑧,𝑇𝑇,𝐶𝐶 = 𝜂𝜂0 1 + 29𝐻𝐻(𝑧𝑧 − 660) exp 𝑉𝑉𝑎𝑎
𝑧𝑧
𝐷𝐷

+ 𝐸𝐸𝑎𝑎
∆𝑇𝑇𝑆𝑆

𝑇𝑇 + 𝑇𝑇off
+𝐾𝐾a𝐶𝐶

with Ea = 16.118 (corresponding to viscosity ratio of 107) from top to surface temperature, Va = 2.303 (top-to-
bottom viscosity ratio of 10), and Ka = 30 (dense material is 30 times more viscous than regular material).

𝜂𝜂 =
𝜂𝜂𝑏𝑏𝜂𝜂𝑌𝑌
𝜂𝜂𝑏𝑏 +𝜂𝜂𝑌𝑌

with

and
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Modeling thermal conductivity
 Thermal conductivity depends on depth (pressure), temperature and composition
as in Guerrero et al., Solid Earth (2023) and EPSL (2024):
- Depth dependence : follows mineral physics data for olivine (UM ; Chang et al., 2017) and bridgmanite and
ferro-periclase (LM ; Hsieh et al., 2017, 2018). This is equivalent to an intrinsic top-to-bottom increase of ~ 27
(at 300 K and excluding adiabatic effect), and ~ 9 along a 2000 K adiabat.
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- Temperature dependence : conductivity
decreases with increasing temperature
as 1/Ta. We explored values of a in the
range 0.0 < a < 1.0.

For lower mantle minerals, experimental
data suggest a in the range 0.2-0.4.

- Compositional dependence : dense
material conductivity is assumed to be 20 %
lower than regular material conductivity.
This accounts for the presence of
material enriched in iron by ~ 4 % in
LLSVPs (Deschamps and Hsieh, GJI,
2019).



Simulations of thermo-chemical convection 

RH = 10 ; k ~ 1/T0.5

 Formation of hot piles of dense material at the CMB.

 Plumes are being generated at the top of these piles.

 Piles are thermally less conductive than surrounding mantle.
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Varying a and dHprim: temperature fields 
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Conditions for generating patches of negative heat flux 

 For weak temperature dependence (low a), patches disappear again at high dHprim.

 Negative heat flux patches appear for temperature exponent a > 0.1 and excess
heating dHprim ≥ 2.

 Threshold value of dHprim increases with decreasing temperature-dependence (lower a).
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CMB heat flux variations and piles topography  
 Patches of negative heat flux appear well within piles interiors (not at their edges),
where topography is highest.
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Power flowing to the core  
 The power flowing to the core increases with a. It also increases with excess heating
but only up to some given value of the (dHprim ~ 15), and then starts decreasing again.

Time averaged over 2 Gyr

 Piles temperature increases with excess heating, but heating rate elsewhere in the
mantle decreases.
As a result, plumes generated at the top of piles are stronger and extract more heat from piles.
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Average CMB heat flux  
 Average CMB heat flux (<Q>) decreases with increasing temperature-dependence of
conductivity (increasing a), and overall independent of excess heating in piles.

Time averaged over 2 Gyr

 For 0.2 < a < 0.8, <Q> is consistent with estimated CMB total power (5-17 TW).
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Consequence for core dynamics and evolution : q*  

 Heat flux heterogeneity

 Time-averaged q* increases with temperature dependence of conductivity
(increasing a) : stronger temperature-dependence should promote magnetic reversals.

𝑞𝑞∗ =
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

2 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is set to 24 mW/m2, assuming kcore =
40 W/m/K and (dT/dz)adia = 0.6 K/km

Time averaged over 2 GyrdHprim = 10

Higher q* favor magnetic field polarity reversals (e.g., Terra-Nova and Amit, 2024).
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Time variations in q*  

 Time variability of q* is important (> 0.5) and larger for higher temperature-
dependence of conductivity (> 1 for a = 0.5).

 May explain geomagnetic superchrones (low q* periods) and hyper-frequency
reversals (high q* periods).
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Patches of negative CMB heat flux
 Appearance:
- Need temperature-dependent thermal conductivity.
- Need excess internal heating in piles of dense material.

 Consequence for core dynamics:
- q* value and temporal variability increase with sensitivity of conductivity to
temperature.
- May play a role in the frequency of magnetic field polarity reversals.

 Strength:
- Total power in patches (flowing to the core) increases with sensitivity of
conductivity to temperature.

- Total power reaches a maximum value for some value of excess heating.

 Location:
- Appear in piles interior, not at their edges.
- Good correlation with piles’ height.



Mapped CMB heat flux
 Mappings can be applied to available seismic tomography (e.g., Houser et al.,
2008) to recover Earth’s CMB heat flux.

- Low heat flux anomalies beneath LLSVPs are attenuated, while large heat flux patches are enhanced.
- The presence of pPv further attenuates the low heat flux anomalies within LLSVPs

To be updated …
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Dans les épisodes précédents …



Simulations of thermo-chemical convection
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Mapping CMB heat flux from seismic velocities

 Simulations of thermo-chemical
convection : temperature, phase
(post-perovskite) and compositional
fields.

 Calculate seismic shear velocity
anomalies averaged in the bottom
200 km …

 ... and CMB heat flux ( ~ dT).

Choblet et al., submitted to PEPI
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Mapping CMB heat flux from seismic velocities

Choblet et al., PEPI, 2023

 Determine synthetic relationships (mappings) between seismic velocities and heat
flux.

𝑞𝑞 =
𝑐𝑐𝑣𝑣𝑇𝑇

1 − 𝑣𝑣𝑇𝑇 + 𝑐𝑐
vT : normalized thermal component of velocity anomaly.

Case A Case E
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Mapped CMB heat flux
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Figure 9 from Cui et al. (2024) GJI 

(max, min)=(2.75, -3.55)

Figure 8 from French & Romanowicz (2014, GJI) 
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Tomographic models
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max, min = 3.73%, -3.63%
Fitted Gaussian parameters:
G1: amplitude = 0.13, mean = -1.59, std = 0.48
G2: amplitude = 0.07, mean = -0.86, std = 0.25
G3: amplitude = 0.46, mean =  0.35, std = 0.69

max, min = 2.75%, -3.55%
Fitted Gaussian parameters:
G1: amplitude = 0.15, mean = -1.30, std = 1.00
G2: amplitude = 0.10, mean = -0.06, std = 0.23
G3: amplitude = 0.49, mean =  0.78, std = 0.47

Finding 3 populations in Vs-tomography
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 Fit Vs frequency histograms with 3 Gaussian, representing 3 different 
populations. 
 Boundaries between populations : set at fractions of standard deviations in
each Gaussian.



 Population percentage calculated for each given dlnVs, using the fitted three
Gaussian distributions.
 Vertical lines indicate the positions where any of the population percentages
equals to 90%.
 Tails at high dlnVs in GLAD-M35 are due to the much slower decay rate of G1
compared to G3. This is an artifact of the method, that we should just ignore.

Population distribution from GLAD-M35 (alternate)
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Population distribution from SEMUCB-WM1

 Population percentage calculated for each given dlnVs, using the fitted three 
Gaussian distributions. 
 Vertical lines indicate the positions where any of the population percentages
equals to 90%.
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 Max/min (red dashed lines) are from dlnVs. Boundaries of delimiters are defined as 
0.8 standard deviation from the mean of each group. 
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CMB heat flux from GLAD-M35
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CMB heat flux from SEMUCB-WM1
 Max/min (red dashed lines) are from dlnVs. Boundaries of delimiters are defined as 
0.8 standard deviation from the mean of each group. 



Mapping CMB heat flux

 Still in progress, but encouraging:
- Can distinguish 3 populations from shear-velocity frequency histograms.
- Conversion to heat flux: saturation issue. Should we use original Q-Vs 
parameterization or modify it ?
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