Common features and characteristics of archeo- and paleomagnetic field models

Wardinski & Terra-Nova & Thebault

SETS OF OBSERVATIONS

- + observations of the geomagnetic field
 - direct observations made by ground-based or satellite-based geomagnetic measurements
 - ightarrow geomagnetic field models (spherical harmonics degree 1-20)
 - indirect observations from sampling the magnetic recordings of rocks, sediments and kilns
 - ightarrow archeo and paleo-geomagnetic field models (spherical harmonics degree 1-10)
- + numerical experiments based on ab-inito calculations of magnetic field generation and heat transfer between Earth's core and mantle

SETS OF OBSERVATIONS

- paleo-geomagnetic field models are based on data that un-evenly sample Earth's magnetic field in time and space
- + severely, temporal uncertainties range from a few decades to 10⁶ years, depending on the age of the sample
- + uneven hemispherical distribution of the data limits model interpretation on southern hemisphere,
- + spatial data distribution allows, at maximum, to resolve spherical harmonic degree ~6 (Brown et al., 2018)

SPATIAL RESOLUTION

total field at Earth's surface

radial field at the CMB (Brown et al.2018)

SET OF MAGNETIC FIELD MODELS

Models based on stochastic inversion

CALS10k.2	past 10 kyrs	10	cubic B-splines	A&L&S
HFM.OL.A1	past 10 kyrs	10	cubic B-splines	A & L & S
SHA.DIFF.14k	past 14 kyrs	10	cubic B-splines	A & L
SHAWQ2k	past 2.3 kyrs	10	cubic B-splines	A & L & S
GGF100k	past 100 kyrs	10	cubic B-splines	A & L & S
GGFSS70k	15-75kyrs BC	6	cubic B-splines	A&L&S

Models based on ensemble and Bayesian approaches

pfm9k.2	past 9 kyrs	5	A & L & S
COV-ARCH & COV-LAKE			
A_FM, ASD_FM, ASDI_FM	past 3 kyrs	5	A & L & S
BIGMUDI4k	past 4 kyrs	8	H & A & L
ArchKalmag14k.r	past 14 kyrs	8	H & A & L

METHOD — SUMMARIZING FIELD MODELS

- + deriving statistical mean and median from set of models
 → mean model, median model
- + deriving spherical mean from set of models
 - compute field components on a spherical grid for each model
 - iterative inversion of the grids for set of averaged Gauss coefficients
 - at each iteration step: define a new weights for each data point
 - favor Huber-weights, less sensitive to large outliers
 → resulting model M_{HW}

+

AVERAGED ARCHEO MODELS g_1^0, g_2^0

AVERAGED HOLOCENE MODELS g_1^0, g_2^0

AVERAGED PLEISTOCENE MODELS g_1^0, g_2^0

COMMON FEATURES OF THE MODELS

 + deriving degree correlation between mean model and individual models as:

$$r_{i}(\ell) = \frac{\sum_{m=0}^{n} (\hat{g}_{\ell}^{m} g_{i,\ell}^{m} + (\hat{h}_{\ell}^{m} h_{i,\ell}^{m})}{\sqrt{\sum_{m=0}^{n} ((\hat{g}_{\ell}^{m})^{2} (\hat{h}_{\ell}^{m})^{2} \sum_{m=0}^{n} ((g_{i,\ell}^{m})^{2} (h_{i,\ell}^{m})^{2})^{2}}},$$

to measure the spatial correlation between models

DEGREE CORRELATION OF THE ARCHEO MODELS

averaged degree correlation mean model and individual models averaged degree correlation of mean model and randomly shuffled models

DEGREE CORRELATION OF THE HOLOCENE MODELS

averaged degree correlation mean model and individual models averaged degree correlation of mean model and randomly shuffled models

DEGREE CORRELATION OF THE PLEISTOCENE MODELS

averaged degree correlation mean model and individual models averaged degree correlation of mean model and randomly shuffled models

EARTH'S LIKENESS OF DYNAMO SIMULATIONS

- + Christensen et al. 2010
 - → relative axial dipole power

$$AD/NAD = P_{10}/(P_{11} + \sum_{n=2}^{8} (a/c)^{2n-2} \sum_{m=0}^{n} P_{nm})$$

with

$$P_{nm} = (n+1)(g_{nm}^2 + h_{nm}^2)$$

→ equatorial symmetry

odd =
$$n + m \rightarrow$$
 equatorial anti-symmetric
even = $n + m \rightarrow$ equatorial symmetric

- → zonality relative power of axisymmetric components in the non-dipole field (Z/NZ)
- \rightarrow dipole latitude

$$heta = an^{-1} \left(rac{g_1^0}{\sqrt{(g_1^1)^2 + (h_1^1)^2}}
ight),$$

DIPOLARITY OF THE MEAN MODEL

SYMMETRIES OF THE MEAN MODEL

SUMMARY OF THE EARTH-LIKENESS VALUES

	AD/NAD	O/E	Z/NZ	dip. latitude
range	0.05–22.56	0.21–3.47	0.01–0.88	69.2–89.7
Pleistocene Holocene archeo	2.75 ± 1.59 10.58 ± 4.28 4.63 ± 1.25	0.80 ± 0.43 0.96 ± 0.62 0.84 ± 0.27	0.26 ± 0.18 0.23 ± 0.18 0.35 ± 0.11	83.58 ± 4.02 86.33 ± 1.62 85.38 ± 2.72 85.50 ± 2.73
archeo COV-OBS.x1	4.63 ±1.25 1.14	0.84 ± 0.27 0.95	0.35 ± 0.11 0.26	

CONCLUSION

- + derivation of mean characteristics of the archeo- and paleomagnetic field that are robustly resolved independently of the model priors
- + low dipolarity in the last 3 kyr, high dipolarity in the Holocene
- + the mean characteristics (spatially and maybe temporally) ease comparison to dynamo simulations
- finding larger ranges of the field dipolarity and symmetries allows to consider a wider set of numerical simulations to be Earth's-like
- + large temporal variability of the dipolarity suggests variability of dynamo reversibility
 - → regime changes of the geodynamo?
 - → state transitions in/at the heat engine of the core?

+ Huber weighting of models allows to identify regions of large data and model uncertainties

<u>Left:</u> Map of the radial magnetic field component (1000 CE), averaged using Huber weights.

<u>Right:</u> Maps of the Huber weights. Intense color identify regions with discrepancies between individual models and data inconsistency.

 + derivation of dipole tilt involves only dipole terms, develop new formalism to compute magnetic pole positions using also non-dipole terms.

 + derivation of dipole tilt involves only dipole terms, develop new formalism to compute magnetic pole positions using also non-dipole terms.

 refined models of paleo secular variation to derive temporal characteristics of the archeo- and paleomagnetic field (westward drift, P_{sv}, etc.)

 refined models of paleo secular variation to derive temporal characteristics of the archeo- and paleomagnetic field (westward drift, P_{sv}, etc.)

