Mapping CMB heat flux from seismic tomography

Frédéric Deschamps¹, Gael Choblet² and Hagay Amit² 1. IES, Academia Sinica, Taipei, Taiwan; 2 LPG, University of Nantes

ANR DYRE-COMB kick-off meeting, July 7th 2023

Motivations

► Heat flux at CMB (mantle-side), $\Phi_{CMB} = kdT/dr$, and its variations (spatial and temporal) impact core dynamics.

► No direct measurements of CMB heat flux. Need to access temperature gradient and its spatial variations.

► Temperature changes : may be inferred from seismic tomography and appropriate modelling.

First order approximation : convert lower mantle tomography (dlnV_S) assuming that seismic velocity are purely thermal in origin. Then :

 $dInV_{S} \sim dT_{CMB} \sim \Phi_{CMB}$

► But : seismic velocity anomalies are unlikely purely thermal in origin ; chemical source is needed to explain them (in particular large low shear wave velocity provinces.

HMSL-S, Houser et al. (2008)

Probabilistic tomography

 \blacktriangleright V_S, V_P and density from normal modes : resolve thermal and compositional contributions to seismic anomalies.

CMB heat flux from probabilistic tomography

- ► CMB heat flux from probabilistic tomography.
- Impact on core dynamics :
- Larger time averaged convective and magnetic activity at low latitude.
- Low latitude magnetic flux and kinetic energy are more time-dependent.

Amit et al., GJI (2015)

CMB heat flux from probabilistic tomography

► Some limitations of probabilistic tomography :

- Low resolution : limited to spherical harmonic degree 2, 4 and 6.
- Assumed mode coupling (e.g., self-coupling, narrow band, ...) affects structure coefficients, and thus density maps (Yang and Tromp, 2015).
- No consensus : Stoneley modes suggest lighter LLSVPs (Koelemeijer et al., 2017), while other modes suggest heavier LLSVPs (Trampert et al., 2004, Mosca et al., 2012).

Koelemeijer et al. (2017)

- ► Alternative approach : mapping CMB heat flux from thermo-chemical structure deduced from simulations of mantle convection.
- Simulations of convection predict temperature, phase (post-perovskite), and compositional fields.
- Calculate synthetic velocity anomalies (dlnV_S) and heat flux (Q_{CMB}) from these fields.
- Infer relationship between synthetic $dlnV_{\text{S}}$ and $Q_{\text{CMB}}.$

DYRE-COMB kick-off meeting, July 7th 2023 – Mapping CMB heat flux

Simulations of thermo-chemical convection

• 3D-spherical simulations using StagYY, with initial layer of dense material (3.5 % in volume) at the bottom of the shell.

• Post-perovskite phase is included in 4 simulations, with Clapeyron in the range 8-16 MPa/K. Controls the height and thickness of pPv-lens above CMB.

• Viscosity depends on temperature (E_a , modelling activation energy) : influence thermo-chemical structure (low temperature-dependence leads to less stable piles).

Case	Ea	pPv	Г _{рРv} (MPa/K)	<t> (K)</t>	$<\Phi_{ m b}>$ (mW/m²)
А	20.7	no pPv	-	1830	54.8
В	13.8	no pPv	-	1410	67.2
С	20.7	Single crossing	8	1960	90.7
D	13.8	Double crossing	13	1820	127.8
E	20.7	Double crossing	13	2090	114.6
F	20.7	Double crossing	16	2120	119.6

DYRE-COMB kick-off meeting, July 7th 2023 – Mapping CMB heat flux

Simulations of thermo-chemical convection

Mapping CMB heat flux from seismic velocities

• Simulations of thermo-chemical convection : temperature, phase (post-perovskite) and compositional fields.

- Calculate seismic shear velocity anomalies averaged in the bottom 200 km ...
- ... and CMB heat flux (~ dT).

Choblet et al., submitted to PEPI

Mapping CMB heat flux from seismic velocities

• Determine synthetic relationships (mappings) between seismic velocities and heat flux.

 $q = \frac{c v_T}{1 - v_T + c}$

 $v_{\rm T}$: normalized thermal component of velocity anomaly.

Mapped CMB heat flux

Mapped CMB heat flux

• Mappings can be applied to available seismic tomography (e.g., Houser et al., 2008) to recover Earth's CMB heat flux.

- Low heat flux anomalies beneath LLSVPs are attenuated, while large heat flux patches are enhanced.

- The presence of pPv further attenuates the low heat flux anomalies within LLSVPs

Perspectives

- ► Account for changes in thermal conductivity :
- In heat flux calculations : conductivity decreases with increasing temperature and increasing iron content.
- In numerical simulations : thermo-chemical structure affected by variations in conductivity.

► Apply 'tomographic filter' to shear velocity maps deduced from simulations of convection.

Core-mantle interactions : perspectives

Impact of locally negative CMB heat flux on core dynamics and structure.

