Earth-like criteria from archeomagnetic field models

Terra-Nova & Wardinski

DYRE-COMB KO: 7. July 2023

SETS OF OBSERVATIONS

- + observations of the geomagnetic field
 - direct observations made by ground-based or satellite-based geomagnetic measurements
 - \rightarrow geomagnetic field models (spherical harmonics degree 1-20)
 - indirect observations from sampling the magnetic recordings of rocks, sediments and kilns

 \rightarrow archeo and paleo-geomagnetic field models (spherical harmonics degree 1-10)

+ numerical experiments based on ab-inito calculations of magnetic field generation and heat transfer between Earth's core and mantle

 \rightarrow see talks of F. Deschamps

 \rightarrow see talks of F. Terra-Nova

SETS OF OBSERVATIONS

- + paleo-geomagnetic field models are based on data that un-evenly sample Earth's magnetic field in time and space
- + severely, temporal uncertainties range from a few decades to 10⁶ years, depending on the age of the sample
- + spatial data distribution allows, at maximum, to resolve spherical harmonic degree ~6 (Brown et al., 2018)

SET OF MAGNETIC FIELD MODELS

The list of archeomagnetic field models evaluated:

- + CALS3k.4a Korte & Constable, 2011 past 3 kyr.
- + CALS10k.2 Constable et al., 2016 past 10 kyr.
- + HFM.OL.A1 Constable et al., 2016- past 9 kyr.
- + pfm9k.1 Nilsson et al., 2014 past 9 kyr.
- + pfm9k.2 Nilsson & Suttie, 2021 past 9 kyr.
- + SHA.DIFF.14k Pavon-Carrasco et al., 2014 past 2014 kyr
- + LSMOD.2 Brown et al., 2018 30-50 kyr.
- + GGFSS70k Panovska et al., 2021 15-75kyr.
- + GGF100k Panovska et al., 2018 past 100 kyr.
- + SHAWQ2K Campuzano et al., 2019 past 3 kyr.
- + COV-ARCH and COV-LAKE Hellio & Gillet, 2018 past 3 kyr.
- + A_FM, ASD_FM and ASDI_FM Licht2013 et al., 2013 past 3 kyr.
- + BIGMUDI4k Arneitz et al., 2019 past 4 kyr.
- + ArchKalmag14k.r Schanner et al., 2022

DYRE-COMB KO: 7. July 2023

SET OF MAGNETIC FIELD MODELS

Models based on stochastic inversion

CALS3k.4a	past 3 kyrs	10	cubic B-splines	A & L
CALS10k.2	past 10 kyrs	10	cubic B-splines	A & L & S
HFM.OL.A1	past 10 kyrs	10	cubic B-splines	A & L & S
pfm9k.1	past 9 kyrs	10	cubic B-splines	A & L & S
SHA.DIFF.14k	past 10 kyrs	10	cubic B-splines	A & L
SHAWQ2k	past 2.3 kyrs	10	cubic B-splines	A & L & S
GGF100k	past 100 kyrs	10	cubic B-splines	A & L & S
GGFSS70k	15-75kyrs BC	6	cubic B-splines	A & L & S

Models based on ensemble and Bayesian approaches

pfm9k.2	past 9 kyrs	5	A & L & S
COV-ARCH & COV-LAKE			
A_FM, ASD_FM, ASDI_FM	past 3 kyrs	5	A & L & S
BIGMUDI4k	past 4 kyrs	8	H & A & L
ArchKalmag14k.r	past 14 kyrs	8	H & A & L

SET OF MAGNETIC FIELD MODELS

radial magnetic field at the CMB (Brown et al. 2018)

DYRE-COMB KO: 7. July 2023

MEASURES OF FIELD COMPLEXITY

- + Mauersberger-Lowes spectra are one way to characterize magnetic field complexity
- + another way: compute spatial quantities like

Norm 1 :
$$\oint B^2 dS|_{r=c} = (l+1) \left(\frac{a}{c}\right)^{(2l+4)}$$

Norm 2:
$$\oint B_r^2 dS|_{r=c} = \frac{(l+1)^2}{2l+1} \left(\frac{a}{c}\right)^{(2l+4)}$$

Norm 3 :
$$\oint (\nabla_h B_r)^2 dS|_{r=c} = \frac{l(l+1)^3}{2l+1} \left(\frac{a}{c}\right)^{(2l+6)}$$

these norms are used to construct most of the field models

EARTH'S LIKENESS OF DYNAMO SIMULATIONS

- + Christensen et al. 2010
 - \rightarrow relative axial dipole power

$$AD/NAD = P_{10}/(P_{11} + \sum_{n=2}^{8} (a/c)^{2n-2} \sum_{m=0}^{n} P_{nm})$$

with

$$P_{nm} = (n+1)(g_{nm}^2 + h_{nm}^2)$$

 \rightarrow equatorial symmetry

odd = $n + m \rightarrow$ equatorial anti-symmetric even = $n + m \rightarrow$ equatorial symmetric

 \rightarrow zonality

relative power of axisymmetric components in the non-dipole field (Z/NZ)

 $\rightarrow \,$ flux concentration

$$\text{FCF} = (\langle B_r^4 \rangle - \langle B_r^2 \rangle^2) / \langle B_r^2 \rangle^2$$

- + this study:
 - ightarrow derive same criteria from archeo- and paleomagnetic field models
 - \rightarrow temporal complexity, new criteria

DYRE-COMB KO: 7. July 2023

RELATIVE AXIAL DIPOL POWER

DYRE-COMB KO: 7. July 2023

9 (13)

EQUATORIAL SYMMETRY

DYRE-COMB KO: 7. July 2023

10 (13)

ZONALITY

DYRE-COMB KO: 7. July 2023

FLUX CONCENTRATION

DYRE-COMB KO: 7. July 2023

12 (13)

OUTLOOK

- + derive mean characteristics of the archeo- and paleomagnetic field that are robustly resolved independently of the model priors
- + the mean characteristics (spatially and maybe temporally) should be compared to dynamo simulations