
Physics of the Earth and Planetary Interiors 276 (2018) 93–105
Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journal homepage: www.elsevier .com/locate /pepi
A time-averaged regional model of the Hermean magnetic field
http://dx.doi.org/10.1016/j.pepi.2017.07.001
0031-9201/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: erwan.thebault@univ-nantes.fr (E. Thébault).
E. Thébault a,⇑, B. Langlais a, J.S. Oliveira b, H. Amit a, L. Leclercq c

a LPG UMR-CNRS 6112 ‘‘Laboratoire de Planétologie et Géodynamique de Nantes”, University of Nantes, 2, rue de la Houssinière BP 92208, 44322 NANTES Cedex 3, France
b Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, CNRS, 1 rue Jussieu F-75005, Paris, France
cUniversity of Virginia, Charlottesville, VA 22903, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 January 2017
Received in revised form 26 June 2017
Accepted 13 July 2017
Available online 20 September 2017
This paper presents the first regional model of the magnetic field of Mercury developed with mathemat-
ical continuous functions. The model has a horizontal spatial resolution of about 830 km at the surface of
the planet, and it is derived without any a priori information about the geometry of the internal and
external fields or regularization. It relies on an extensive dataset of the MESSENGER’s measurements
selected over its entire orbital lifetime between 2011 and 2015. A first order separation between the
internal and the external fields over the Northern hemisphere is achieved under the assumption that
the magnetic field measurements are acquired in a source free region within the magnetospheric cavity.
When downward continued to the core-mantle boundary, the model confirms some of the general struc-
tures observed in previous studies such as the dominance of zonal field, the location of the North mag-
netic pole, and the global absence of significant small scale structures. The transformation of the regional
model into a global spherical harmonic one provides an estimate for the axial quadrupole to axial dipole
ratio of about g0

2=g
0
1 ¼ 0:27. This is much lower than previous estimates of about 0.40. We note that it is

possible to obtain a similar ratio provided that more weight is put on the location of the magnetic equator
and less elsewhere.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Mariner 10 mission flybys (Ness et al., 1974, 1975) showed
that Mercury’s magnetic environment is distinctive from other
planets. It is characterized by a comparatively weaker internal field
and by a stronger external field due to its shorter distance to the
Sun. The first magnetic field measurements suggested that the
Hermean internal field is mostly dipolar and may be stronger in
the northern than in the southern hemisphere. This feature can
be well represented by a single equivalent magnetic dipole with
a northward offset along Mercury’s spin axis [e.g., Ng and Beard,
1979]. Despite this very intriguing feature one had to wait until
the launch of the MESSENGER spacecraft in 2004 to further inves-
tigate the Hermean magnetic field.

The MESSENGER (MErcury Surface, Space ENvironment,
GEochemistry and Ranging) spacecraft operated around Mercury
from March 2011 until April 2015. It confirmed that the internal
field is mostly symmetric with respect to the planet’s spin axis
(Anderson et al., 2008; Anderson et al., 2011). The field is longitu-
dinally essentially symmetric and can be represented by an equiv-
alent dipole field shifted northward of about 0.196 RM with respect
to the center of the planet (Anderson et al., 2012; Johnson et al.,
2012), with RM = 2440 km the radius of Mercury. When expressed
in terms of Spherical Harmonics (SH) coefficients in the planeto-
centric reference frame, this dipole offset implies that the ratio
between the axial quadrupole and dipole SH terms is about 0.4.

The dipole representation is a mathematical convenience useful
to approximate large scale planetary magnetic fields with a mini-
mum number of parameters. It should be kept in mind that we
should not attribute a physical meaning to this offset (Lowes,
1994). On Earth 98% of the geomagnetic field on the surface at epoch
2015 can be explained by a single dipole shifted away from the cen-
ter by about 578 km or 0.091 Earth’s radius (Laundal and Richmond,
2016). In the case of Mercury this offset representation has had
strong implications on our understanding of the origin of the Her-
mean internal field, because the globalmagnetic feature it describes
is difficult to reproduce by numerical dynamo simulations [e.g.,
Wicht et al., 2007; Cao et al. et al., 2014; Wicht and Heyner,
2014]. In the following study we propose a different representation
of the time-average Hermean magnetic field through a regional
modeling of MESSENGER’s measurements over its entire lifetime.

The reassessment of the dipole offset hypothesis is justified for
several reasons. First, this hypothesis does not take into account
the deformation of the Hermean field by the solar wind as
measured by the MESSENGER mission. The solar wind interacts
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with the Mercury’s main magnetic field which causes the field
lines in the magnetosphere to be compressed in the day side and
elongated toward local midnight. Second, the elliptical orbital con-
figuration of MESSENGER does not allow probing the internal mag-
netic field of Mercury over its southern hemisphere. This lack of
measurements represents a real challenge for planetary scale mag-
netic field representations. This, in turn, has possible consequences
on the estimated dipole to quadrupole ratio. Third, data coverage
also causes numerical issues related to the separation of the field
into its internal and external contributions with respect to Mer-
cury’s surface. The numerically strong correlation between internal
and external SH coefficients was in-depth investigated by Uno
et al. (2009) in the case of MESSENGER’s data. A more formal and
general mathematical discussion about this separation problem
can be found in Olsen et al. (2010).

The offset dipole hypothesis resorts to further explicit assump-
tions. One of them is that the magnetospheric current system is
shifted northward. The position of the magnetic equator thus con-
strains the morphology of the internal (Anderson et al., 2012) and
external field (Alexeev et al., 2010; Winslow et al., 2013; Korth
et al., 2014), or both when a joint analysis is conducted (Johnson
et al., 2012). This strong hypothesis stems from the observation
that the location of the magnetic equator is statistically invariant
between 1000 km and 5000 km altitudes (Anderson et al., 2011).
Although a planetary magnetic field may indeed appear essentially
dipolar by geometric attenuation with altitude, the best-fit posi-
tion of the equivalent (axial and offset) dipole varies with the
radius (or altitude) of the measurements for any field deviating
from the pure dipole geometry (Lowes, 1994).

The apparently constant location of the magnetic equator with
altitude may be altered by the fact that measurements are noisy
and made at some distance from the planet, i.e., above 1000 km.
Further complications arise in the case of Mercury and MESSEN-
GER. First the magnetic equator is not crossed at lower altitudes.
Second electric currents are present in the Hermean environment
[e.g., Alexeev et al., 2010; Anderson et al., 2010, 2013, 2014] and
require special care to select and analyze the measurements. One
possible route to circumvent the lack of global coverage of mea-
surements is to carry out regional analyses. Oliveira et al. (2015)
for example proposed to model the measurements over the north-
ern hemisphere by an equivalent layer of magnetic dipoles placed
at depth in the Mercury’s interior.

In this paper, we choose to apply the Revised Spherical Cap Har-
monic Analysis [R-SCHA, Thébault et al., 2006] to derive a regional
static magnetic field model from low-altitude measurements only
(61000 km). This regional modeling approach uses continuous
mathematical functions and differs from the equivalent source
dipole one. In depth details of the R-SCHA method can be found
in Thébault et al. (2006), Thébault (2008). In the next section, we
recall the key elements of the method. Because the R-SCHAmethod
is a potential field method, we discuss and justify the assumptions
and approximations made to tackle the issue of electrical currents
crossing Mercury’s exosphere. We then summarize the synthetic
analyses that were conducted to demonstrate the proof of concept
of the method in the case of MESSENGER. The regional modeling is
applied to MESSENGER’s magnetic field measurements fromMarch
2011 until April 2015 in Section 4. The regional model is finally dis-
cussed together with its relationships to SH in the spectral and in
the spatial domains.

2. Method

2.1. Mathematical formalism

The magnetic field model is derived under the assumption that
the selected measurements are acquired within a portion of the
spherical shell that is free of electric currents. This assumption is
justified in Section 2.3. In the specific case of Mercury and MES-
SENGER measurements we solve the problem within a spherical
cone that is coaxial with the planet’s rotation axis. The source free
domain is closed below and above by two spherical caps at radius
r ¼ RM and at b ¼ RM þ 1000 km, the maximum altitude of the
measurements considered in this study. The cone is closed laterally
at colatitude h ¼ h0 and covers all longitudes u. In the R-SCHA
method, the magnetic potential V is the sum of V1 and V2 that
are expressed in terms of the infinite series (Thébault et al., 2006)
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where m; p and k are integer indices. In practice, the expansion ser-
ies are truncated at some maximum degree Mmax; Pmax;Kmax, whose
values depend on the resolution of the data. m is the order of the
R-SCHA harmonics and is the analog of the order m in SH [e.g.,

De Santis et al., 1999]. The coefficients gm;i
nk
; qm;e

nk
; gm

p

� �
are the regio-

nal coefficients and the unknowns of the inverse problem. The
superscript i and e stand for internal and external, respectively.
RpðrÞ are the radial functions of the so-called Mehler basis functions
with Mm

p ðh;uÞ describing the horizontal spatial variations of this

contribution. Lmnk ðh;uÞ are the generalization of the Legendre basis
functions involving the Schmidt quasi-normalized associated
Legendre functions Pm

nk
ðhÞ of degree nk and orderm. Here, the degree

nk is real and depends on the index k, the order m, and the half-
aperture h0 of the cone. It is asymptotically related to the horizontal
spatial wavelength on the Mercury’s surface by

k ’ 2pRM=nk: ð3Þ
The R-SCHA mathematical functions have some useful proper-

ties which are detailed below. First, the solution is complete so that
any potential field can be represented with a unique set of regional
coefficients. Second, the basis functions are orthogonal within the
volume under consideration. This represents an advantage over the
standard SH analysis that requires ad hoc regularization when
measurements are available only over a portion of the sphere
[e.g., Uno et al., 2009]. Modeling the magnetic field measurements
with orthogonal functions further guarantees that the model is lit-
tle dependent on the truncation Kmax and Pmax of the infinite series
(Eqs. 1 and 2). This minimizes the numerical covariance between
parameters, significantly reduces possible spectral aliasing, and
leads to a numerically stable inverse problem. This latter property
provides some confidence that the noise and/or non-potential
sources should not contaminate or bias the model. The only
numerical adverse effect of solving the problem on a regional scale
is the possible occurrence of edge effects near the boundaries of
the considered domain.

The dot products of the functions within a spherical cap surface
@X at radius r also allow defining magnetic field power spectra.
Because both potentials are series expressed in terms of the order
m (Eqs. 1 and 2) the total power E@X on any arbitrary spherical cap
surface can be split order by order into the sum of E@X

m

E@X ¼
ZZ

5V :5 V@Xc ¼
X
m¼0

E@X
m : ð4Þ

This distribution of the energy among the ordersm is referred to
as the surface azimuthal power spectrum in the following. When
the vector field averages out to zero within the volume, or when
the field has angular spatial scales smaller than the half-angle h0,
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the contributions from the Mehler functions (V2) are negligible. In
this case, the energy is mostly carried by the Legendre basis func-
tions and we can reasonably approximate

E@X ’
ZZ

5V1:5 V1@Xc; ð5Þ

and by reversing the order of summation

E@X ’
X
k¼1

E@X
k : ð6Þ
2.2. Relations to global Spherical Harmonics

The degree nk is asymptotically independent of m when k � 1
and is simply related to k (Robin, 1959)

na
k ’ kþ 1=2ð Þ p

2h0
� 1
2
: ð7Þ

Vervelidou and Thébault (2015) derived a second power spec-
trum relating this degree nk to a typical length scale such a k
(see Eq. 3). It is thus possible to group together the magnetic field
contributions belonging to basis functions with similar numerical
values of degrees nk around the asymptotic expression na

k. This
so-called horizontal spatial power spectrum can be compared to
the global spatial Mauersberger-Lowes power spectrum (Lowes,
1966) derived in SH (Vervelidou and Thébault, 2015) although it
is not equivalent degree by degree. For this reason, the na

k values
are hereafter named the equivalent SH degrees.

Finally the regional parameters are analytically related to the
internal gm

l and external qm
l SH Gauss coefficients with l and m

the SH degree and order. For example, the so-called external R-
SCHA coefficients are related to the SH Gauss coefficients by the
expression (Thébault et al., 2006)
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where the dot products between the Legendre functions are

Pm
nk
; Pm

l

D E
¼

Z h0

0
Pm
nk
Pm
l sin hdh ð9Þ

and their norm

Pm
nk

��� ���2
¼

Z h0

0
Pm
nk
Pm
nk
sin hdh: ð10Þ

Similar relationships can be written for the gm;i
nk

and gm
p regional

coefficients. A set of global internal and external SH coefficients
can be estimated by numerical inversion of these relationships or
by linear inversion of the regional magnetic field prediction within
the cone. This, however, cannot be done in an unambiguous way as
the given example shows the linear dependency of the regional
external coefficients to both the internal gm

l and external qm
l SH glo-

bal Gauss coefficients. This illustrates the classical problem in
potential field methods to properly separate internal and external
fields when the information (i.e., measurements) is available only
over a limited area of the sphere. This issue is not specific to R-
SCHA. Instead it arises because the exact separation between inter-
nal and external fields with respect to the planet’s surface is possi-
ble only if magnetic vector measurements are available on a closed
spherical surface (Backus et al., 1996). In the case of Mercury, we
work over an almost complete hemisphere and we are close to
the approximation h0 ’ 90�. For such a spherical cap centered on

the northern hemisphere we find that nk ’ l and Pm
nk
; Pm
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in Eq. (8) the expression in Eq. 8 reduces to
qm;e
nk

’ qm
l ;nk ’ lforl�modd:

A similar result can be obtained for the internal SH coefficients
using [Thébault et al. (2006) their Eq. 28]. It results that, when ana-
lysing MESSENGERmeasurements with R-SCHA, the regional inter-
nal and external coefficients are also almost the analogues of the
internal and external SH global Gauss coefficients for the l�m
odd terms. We note that the SH l�m even terms are unconstrained
by the measurements in the Northern hemisphere, as it will be dis-
cussed below. The R-SCHA modeling strategy is thus especially
appealing, as it makes it possible to infer hypotheses on a global
scale in SH from regional analyses.
2.3. Hypotheses and data selection

The vector magnetic field can be completely described in terms
of the gradient of a scalar potential and the curl of a vector poten-
tial. The contributions carried by the curl of the vector potential are
function of the electric current plus the displacement current
according to the Ampère-Maxwell equation. They cancel out only
in source free region. As a result, the internal field of Mercury is
a potential field above the surface or actually above the surface
of the dynamo generation region if one assumes that the mantle
is weakly electrically conductive [see for instance Verhoeven
et al., 2009 who computed synthetic electrical conductivity profiles
for different scenarios of the mantle composition]. However, other
fields created by currents in the hermean environment below or at
the altitude of the spacecraft may bias the potential field
representation.

A classical way to minimize the occurrence of currents and their
effects on the internal field modeling is to rely first on a data selec-
tion procedure. One purpose of this selection is to reject data that
agree the least with the source-free assumption. Features for
which the temporal and spatial complexity are not compatible
with the model parameters or the smoothing norm functions used
for their mathematical representation in time and in space can also
be a priori eliminated. Among the possible contaminating fields,
the ones created by magnetospheric currents at altitudes above
the magnetopause subsolar standoff distance [about 0.4 of Mer-
cury’s radius in the dayside, see Anderson et al., 2008] are particu-
larly complex. Their large spatial scales indeed overlap with the
internal planetary field of Mercury. To minimize them it is suffi-
cient to select data measured within the magnetospheric cavity
only, i.e., outside and possibly far from the magnetopause crossing
and at magnetically quiet times. This data selection does not
remove the poloidal fields generated by magnetospheric currents
within the magnetospheric cavity, but these can be represented
by relatively smooth and large spatial scale external harmonic
functions which we use in this study. The global poloidal magneto-
spheric fields are thus not problematic provided that we coesti-
mate internal and external fields.

Mercury has no ionosphere and its exosphere is essentially neu-
tral (Slavin et al., 2007). There is thus no shell or layer of horizontal
currents within the magnetospheric cavity. Compared to Earth, this
situation considerably alleviates the problem of separating internal
and external magnetic fields from space (Finlay et al., 2016).

A major source of concerns on Mercury is related to the magne-
tospheric currents that reconnect within the planet (Janhunen and
Kallio et al., 2004) through Field Aligned Currents (FACs). These so-



Table 1
Estimated SH Gauss coefficients for the internal and external parts (in unit of nT) for
different degrees l and ordersm. The input model used is shown for comparison in the
right column. External SH Gauss coefficients of degree larger than 1 are not estimated.

Internal Case 1 Case 2 Input model

g01 �213.2 �189.7 �190.0

g11 �1.7 1.6 0.1

h1
1

1.5 0.3 0.5

g02 �155.7 �74.7 �74.6

g03 159.5 �24.2 �22.0

g04 �131.4 – �5.7

g05 73.1 3.4 8.3

External

q01 �41.2 �40.4 �40.0

q11 0.3 0.2 0.0

s11 �0.1 �0.1 0.0
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called Birkeland currents at Mercury were first observed in the
Mariner measurements (Slavin et al., 1997). They were more
recently confirmed with an analysis of the MESSENGER’s measure-
ments (Anderson et al., 2014). In our approach, these currents are
in principle the most problematic ones because their presence
within the magnetospheric cavity is in contradiction with the
source free method we apply.

Yet, the situation is maybe not so severe. During magnetically
quiet times, the poloidal and toroidal magnetic fields generated
by the FACs are in excess of 20 nT (Anderson et al. (2014), see their
Fig. 2). However, toroidal and poloidal magnetic fields are by defi-
nition orthogonal (Backus et al., 1996). Only a fraction of these
associated fields, the poloidal ones, may thus leak into the poloidal
part of the regional model. Apart from transient perturbations, the
remaining fraction of the 20 nT magnetic fields associated with the
FACs are relatively fixed with respect to Magnetic Local Time (MLT)
and exhibit a different polarity between the day and the night
sides. They thus average out over one Mercury’s solar day (about
176 Earth’s days). In this study, we consider more than 8 solar days
(about 4 Earth’s years) of MESSENGER’s measurements. This is a
time span long enough so that it further minimizes the risk of
strong contamination.

In order to further reduce this possible leakage which would be
restricted to the polar area north of 60�N, we implement numerical
safeguards in the inverse problem. Measurements are weighted
according to their latitude by putting more constraint on low lati-
tude than on high latitude measurements. We also apply an algo-
rithm to iteratively reweight the data that may still be
contaminated by significant transient magnetic field perturbations.

The only issue that cannot be resolved by the available mea-
surements is currents generating quasi-static fields between the
surface of the dynamo region and the orbit of MESSENGER. These
contributions would be seen as internal fields and not separable
from the internal field of the planet. This ambiguity, that arises also
when fields are induced in the planet by external fields is ubiqui-
tous in planetary magnetism (Olsen et al., 2010) and can be
addressed only by time-varying field analyses.

We use the latest MESSENGER calibrated magnetic field mea-
surements (MESSENGER Data Release 15, version V08) acquired
during more than 8 Mercury solar days from 23 March 2011 until
30 April 2015. We apply a proxy defined by Oliveira et al. (2015) to
identify and reject measurements with high-frequency variations
which are usually present outside the magnetosphere and which
disappear inside the magnetopause. This proxy allows us to iden-
tify and to select for each orbit only the measurements within
the magnetospheric cavity. In addition, we keep only the measure-
ments acquired below 1000 km altitude. This maximum altitude
further aims at excluding data too close to the day side magne-
topause that may have large spatio-temporal variability. The
selected orbit portions correspond to reduced external field pertur-
bations. All selected data below 1000 km altitude are north of 5�

latitude. Therefore, we set the half-aperture of the cone to
h0 ¼ 85�. The cone is aligned onto Mercury’s axis of rotation and
covers almost the entire Northern hemisphere. A full azimuthal
coverage in the Mercury Body Fixed (MBF) coordinate system is
completed every sidereal day on Mercury (about 56 Earth’s days).
The geographical coverage within the cone in the MBF reference
frame is therefore very dense. Due to the spin orbit 3:2 resonance
on Mercury, all MLT are surveyed after 3 days or 2 years, which
corresponds to 1 solar day. The coverage in MLT is sufficient to
average out (in principle) the external field contributions which
are more or less static in the Mercury-centric Solar Orbital (MSO)
reference frame. The median and mean altitudes of the measure-
ments are 500 and 530 km, respectively. The radial distribution is
dense, but the low latitude measurements are at higher altitudes,
with a median altitude equal to 700 and 450 km south and north
of 45�N, respectively. This data selection protocol generates a data-
set of 1,675,748 data triplet (5,141,166 vector field components).
3. Synthetic analysis

In this section we carry out a simple end-to-end synthetic anal-
ysis which consists in first computing a synthetic magnetic field in
SH on the location of the selected MESSENGER data as described
above and then in estimating the SH Gauss coefficients from the
regional model. We attempt to simulate a realistic internal mag-
netic field at Mercury. For this, we use the SH internal Gauss coef-
ficients estimated by Anderson et al. (2012) see their Table 4] for
the zonal terms (m ¼ 0) from degree l ¼ 1 to 4 (right column of
Table 1). The magnetic field contributions of the other SH coeffi-
cients up to degree 10 are assumed to amount to 20 nT Root Mean
Square (RMS) in total on Mercury’s spherical surface. Their individ-
ual values are drawn from a random Gaussian distribution and the
energy is distributed equally over the SH degrees. For the magne-
tospheric field, we simulate a 88-day temporal variation (1 Her-
mean year) as a function of the heliocentric distance. The
magnetospheric field, simply represented in SH by the q0

1 coeffi-
cient, is assumed to be stronger at the perihelion and weaker at
the aphelion. We add to this periodic variation of the external field
a 88-day variation with random amplitude in order to simulate
changes of the solar wind plasma (see Fig. 1). For the simulation
of the external field we do not consider other source fields such
as FACs. The synthetic magnetic field vector components are com-
puted at the location of the selected MESSENGER’s measurements.
We further add a random noise with a standard deviation of 20 nT
to simulate data errors and to test the numerical stability of the
solution with downward continuation to the core-mantle bound-
ary. The synthetic field model contains a signal up to SH degree
10 but we expand the R-SCHA series to equivalent R-SCHA degree
18 in order to investigate the propagation of the noise within the
regional coefficients at higher harmonics. This also helps to iden-
tify possible spectral aliasing. We also coestimate the external part
of the regional basis functions to illustrate and quantify the leakage
of global external field into internal and external regional coeffi-
cients when a cone of 85� half-aperture is considered. The infinite
series in Eqs. (1) and (2) are truncated to Kmax ¼ 18;Mmax ¼ 18 and
Pmax ¼ 4. With these truncations, the conditioning of the inverse
problem is satisfactory and the inverse matrix is essentially diago-
nal thus showing that the basis functions, given the real data dis-
tribution, are numerically close-to-orthogonal. The maximum
theoretical horizontal spatial resolution of the model is about
830 km on the Mercury’s mean spherical surface.



Fig. 1. Simulated temporal variation of the external Gauss coefficient q0
1 (in unit of nT) as a function of the heliocentric distance of Mercury over the entire MESSENGER’s

mission lifetime. The mean value is q0
1 ¼ �40 nT.
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In order to derive a solution in agreement with the dot product
in the cone (see Eq. 9) weweight themeasurements by sin hi, where
hi is the colatitude of each vector measurement i. This weight also
mitigates the possible contamination of the model by magnetic
field associated with the FACs. We further use an Iteratively
Reweighted Least Squares (IRLS) procedure to identify and under-
weight the outliers. The weights entering the IRLS calculation are
allocated by a hypothesis on the error distribution known as the
Huber distribution (Huber, 1981). The data departure from the best
estimation of themeanmodel is chosen as a compromise between a
Gaussian distribution within one standard deviation of the misfit
function and a longer-tailed Laplace distribution otherwise [see
for example Thébault et al., 2015, their Eq. 15]. This procedure is
designed to minimize the possible bias introduced by time-
varying external magnetic fields and/or discrepant measurements.

The standard deviation between the noisy measurements and
the regional model is 20.02 nT, 20.00 nT, and 20.02 nT respectively
on the North (X), East (Y), and Vertical (Z) spherical components.
This is consistent with the amount of Gaussian random noise
added to the synthetic data and the magnitude of the temporal
synthetic external field variations. The model and the data corre-
late to 97% and the mean difference is centered on zero, indicating
no misfit bias. Fig. 2 represents the noise-free radial component of
the internal synthetic SH model at 400 km depth, which is the
commonly accepted depth of the core mantle boundary (CMB) at
Mercury (Hauck et al., 2013; Rivoldini and Van Hoolst et al.,
Fig. 2. Left: vertical component of the synthetic SH model computed at the core mantle b
the R-SCHA model at the CMB; right: difference between both vertical components.
2013). The vertical component predicted by the R-SCHA internal
model at the CMB is sketched in the middle and the differences
between the input and predicted fields are shown on the right
panel. We confirm that the R-SCHA model is stable and noise-
free. It can further be downward continued to Mercury’s CMB in
spite of the large mean/median distance between the measure-
ments and the CMB. The horizontal components (not shown) indi-
cate a similar level of agreement. The most important feature in
the residual maps is the relative increase of small scale residuals
at the lateral (southern) boundary. This is due to well-known edge
effects occurring whenmodeling a global field on a small portion of
the sphere. Keeping this limitation in mind, the RMS difference
between the initial SH and the resulting R-SCHA models estimated
from the noisy synthetic measurements is about 60 nT (10%) for
the X, 20 nT for the Y (20%), and 60 nT (9%) for the Z components
at the CMB.

We show in Fig. 3 the R-SCHA azimuthal power spectrum given
by Eq. (4) at the CMB. The spectrum informs us about the distribu-
tion of the magnetic energy among the orders m and will be used
hereafter to compare the energy carried by the zonal and non-
zonal terms. As expected by construction of the synthetic SH
model, the resulting mean R-SCHA model is mostly zonal. The azi-
muthal distribution of the SH model (for the whole sphere) is
shown for comparison. There is a good agreement between the
regional and the global azimuthal spectra. The small differences
arise because the R-SCHA azimuthal power spectrum describes
oundary of Mercury assumed to be at 400 km depth; Middle: vertical component of



Fig. 3. Top: azimuthal power spectra of the synthetic SH (blue) and the R-SCHA (red) models at the CMB; bottom: horizontal spatial power spectrum of the SH (blue) and the
R-SCHA (red) models at the CMB. Full symbols show the value of the order m and degrees (see text for details). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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the mean square field over a portion of the northern hemisphere
while the SH azimuthal spectrum characterizes the mean square
field over the entire sphere. We also compute with the Eq. (6)
the spatial power spectrum at the CMB and split its contributions
into the internal and external terms. As indicated above, the
degrees nk values are real, not integer. The external regional coef-
ficients above R-SCHA degree 1 are not zero, which was expected
from the above discussion concerning the internal/external separa-
tion problem. However, the power spectrum of these contributions
is at least four orders of magnitude lower than the power spectrum
of the internal regional coefficients. At the CMB, the leakage of the
internal field into the external R-SCHA coefficients amounts to less
than 5 nT RMS. This is a value smaller than the difference between
the SH and the R-SCHAmodel at the CMB due to downward contin-
uation issues. The difference between the R-SCHA and SH spatial
power spectra is the indication that the regional spatial power
spectrum does not carry alone the full signal. The Legendre basis
function carry 96% of it while 4% is carried by the Mehler basis
functions. An important feature emerging from the azimuthal
and the spatial power spectra is the cutoff around the order 10.
This corresponds to the maximum spatial expansion of the syn-
thetic SH model. Because the R-SCHA and SH degrees are not
strictly equivalent representation of the field, the cutoff is slightly
shifted towards larger R-SCHA degrees [see also Vervelidou and
Thébault, 2015; Maus, 2008].

This simulation demonstrates the consistency and the useful-
ness of the regional model to infer some general properties of
the magnetic field at different altitudes and depths (such as the
distribution of the energy among orders and degrees, for example).
However, a global SH model is useful for planetary scale applica-
tions. We thus attempt to convert the regional model into a global
SH model. When doing so, it is important to stress again that the
solution cannot be unique. When measurements are available only
over the northern hemisphere, only l�m odd SH terms form an
orthogonal basis and are therefore mathematically separable. This
implies that introducing the l�m even terms in the SH analysis
causes covariance among all coefficients. This covariance between
coefficients represents a serious problem. It may be responsible for



Table 2
Misfit statistics: standard deviation (std), mean residuals (<residuals >) and
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numerical instabilities which may translate into magnetic energy
transfer from some coefficients into some others [e.g. Korth et al.,
2014; Uno et al., 2009]. As a result, the analysis of the estimated
model in the spectral domain should be done with care.

Yet, the covariance between the coefficients can be minimized
with a careful selection of the coefficients best representing the
magnetic field characteristics. This implies that the truncated glo-
bal magnetic field model in SH is not as complete as the regional
one. In addition, the estimated terms may carry some energy
belonging to non-estimated terms. This spectral leakage, or alias-
ing, is commonly observed in modelling the Earth’s magnetic field
with truncated SH functions [e.g. Baerenzung et al., 2014]. Pre-
MESSENGER models of Mercury’s magnetic field coevaluating the
zonal dipole and quadrupole terms are suspected to be aliased in
a similar way [e.g., Connerney and Ness, 1999 their Fig. 5]. Choos-
ing the most relevant SH coefficients to represent the measure-
ments while minimizing the covariance between them is no
trivial matter. For example, one of the most striking features of
the Mercury’s field are the large scale and essentially zonal struc-
tures and the Northward shift of the magnetic equator. The SH
models of (Anderson et al., 2008) and (Johnson et al., 2012) are
strongly constrained by this observation. Note that the l�m odd
zonal terms are symmetric with respect to the geographic equator.
They cannot reproduce alone this apparent magnetic field asym-
metry. As a consequence, at least one l�m even term must be
added in the SH analysis in order to derive a model that mimics
this important feature. However, this is done at the cost of degrad-
ing the estimation of the l�m odd terms. We verify numerically
these general considerations. The regional synthetic model is con-
verted into two sets of SH Gauss coefficients. The first set (case 1)
of Gauss coefficients consists in the full internal dipole term (l ¼ 1)
and all zonal terms from degree 2 to 5. The second set (case 2)
includes the full dipole terms (l ¼ 1), the zonal and l odd terms,
and the g0

2 coefficient. For both models, we also coestimate the
external dipole term (l ¼ 1). The difference between the two sets
of estimated SH models is thus the g0

4 coefficient. Higher degree
terms are not considered because they are not meaningful due to
covariance issues. The results are shown in Table 1 together with
the input SH model. The case 2 coefficients are well correlated with
those of the input model while the case 1 suffers from numerical
instabilities. Better performance could have maybe been obtained
by adding a priori regularization or assumption but our intention
is to illustrate only the covariance issue without regularization.
The exact separation between internal and external fields is
numerically not tractable due to incomplete coverage [e.g., Olsen
et al., 2010]. However, in both cases we note that the estimated
external dipole terms are consistent with the value of the synthetic
input model. We derive two main conclusions from these syn-
thetic tests. First, including l�m even terms introduces errors on
all harmonics. This can however be minimized by considering only
the g0

2 coefficient. Second, a first order internal/external field sepa-
ration is achievable with our approach. We stress out that these
conclusions are valid for the assumptions we made here consider-
ing the field geometry and the measurements distribution. In the
following we consider a SH global model without the g0

4 coefficient.
This differs from the model of (Anderson et al., 2011) and (Johnson
et al., 2012). This global SH model is based on a R-SCHA model
which is presented in the next section.
correlation R between the model and the measurements for the Vertical (Z), the
North (X) and the East (Y) field component.

Component std (nT) <residuals> (nT) R

Z ¼ �Br 26.4 0.1 0.98
X ¼ �Bh 31.1 �0.2 0.88
Y ¼ B/ 34.0 �0.2 0.12
All vector components 30.6 �0.1 0.97
4. Application to MESSENGER data and discussion

4.1. Misfit to the measurements

The MESSENGER’s vector measurements are modelled region-
ally with the same degree truncation as discussed previously.
The misfit between the vector field measurements and the model
is about 29 nT (Table 2) with the model explaining more than
97% of the magnetic field signal at altitudes lower than 1000 km.
The nearly zero mean residual distribution for each component
indicates that no significant static field contribution is missed by
the regional model.

We display in Fig. (4) the differences between the field intensity
of the measurements and that predicted by the regional model as a
function of the longitude, the latitude, the altitude, the epoch and
the local time. In each case, we also display a 6th degree polyno-
mial fit of the residuals (red line). This polynomial has no physical
significance but helps us to identify the occurrence of a general
trend between the residuals and the position in space and/or time
of the data. We observe comparatively larger scatter in the residu-
als at large latitudes compared to low latitudes. A similar observa-
tion is made at high altitudes (above 350 km) compared to low
altitudes. High latitude larger differences can be attributed to FACs
and/or to the fact that the measurements are underweighted. High
altitude differences can be explained by the proximity of the data
to the magnetopause and a larger contamination by small scale
transient external fields.

More importantly, the residuals are correlated with the time.
There is a 88-day modulation of the residuals (one Hermean year)
and a significant year to year variability. The residuals are also
clearly correlated with the local time. They are stronger and more
scattered during day than during night times. We also detect evi-
dent outliers in the dataset that a posteriori justify the use of the
robust weighting scheme in the inverse problem. The focus of
the present work is not on the time varying external field. How-
ever, we note that a significant fraction of the residuals (or non-
modelled features) can be related to the day of year of MESSENGER
around Mercury and to the local time. The model we derive has to
be seen as a time-averaged regional model of the Hermean mag-
netic field. These residuals further show that the time-varying
external magnetic field around Mercury does not enter the model.

4.2. Spectral analyses

The surface azimuthal power spectrum (Eq. 4) is computed at
three altitudes (Fig. 5-top). At 500 km (the mean altitude of the
measurements) the zonal terms carry 99% of the signal. At the sur-
face of Mercury the power spectrum indicates that the RMS total
field is 411�23 nT. The zonal terms represent 99% of the total sig-
nal. About 1% RMS (less than 25 nT) is distributed on non-zonal
terms. The behavior of the azimuthal power spectrum with down-
ward continuation to the CMB does not exhibit unrealistic values
for the large orders terms and seems converged. At the CMB the
RMS field is about 752�43 nT and remains zonal at 98%. The regio-
nal model confirms that the Hermean magnetic field is strongly
symmetric with respect to the planet’s spin axis which is a partic-
ularly intriguing feature.

The Legendre functions (V1) account for more than 96% of the
field RMS at Mercury’s mean surface, the estimated CMB, and the
mean altitude of MESSENGER’s data. We therefore neglect for a
while the contribution of potential V2 (Eq. 2) and we compute with



Fig. 4. Intensity misfit between the MESSENGER measurements and the R-SCHA model as a function of the geographic longitude (A), the latitude (B), the altitude (C), the
epoch (D), and the local time (E). The red curves are the respective best fit of a polynomial of order 6 (see text for details).
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the Eq. (5) the horizontal spatial power spectra at various radii in
Fig. (5-bottom). We display the power spectra of the internal and
external contributions separately. The regional degrees na

k (Eq. 7)
larger than 2 carry 16%, 5%, and 3% of the signal at the CMB, the
surface and 500 km altitude, respectively. We also note that the
external field is mostly present on spatial scales larger than about
7700 km (up to equivalent degree na

k ’ 2) and that smaller scale
contributions are negligible.

It has been proposed that the magnetic field spectrum is flat on
the CMB (Backus et al., 1996), in particular its non-zonal part



Fig. 5. Top: azimuthal power spectra of the R-SCHA model at the CMB (blue), on Mercury’s mean surface (red) and at the mean altitude of MESSENGER’s measurements
(black); bottom: horizontal spatial power spectrum of R-SCHA models at the CMB (blue), at Mercury’s mean surface (red) and at the mean altitude of the MESSENGER’s
measurements (black). Solid lines show the spectra of the internal parameters and dotted lines show the spectra of the external parameters. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Langlais et al., 2014). Here, the general shape of the power spec-
trum at 400 km depth is decreasing up to equivalent degree 13
but is in general agreement with the estimated depth of the CMB
inferred from gravity field measurements (Hauck et al., 2013;
Rivoldini and Van Hoolst et al., 2013). There is a small rise of the
power spectrum at the CMB beyond R-SCHA degree/order 13.
These degrees have a rather flat contribution on Mercury’s mean
surface. They could be interpreted as the signature of a magnetic
crust similar to what is observed on Earth around SH degrees
13–15 [see Thébault et al., 2010, for a review]. In order to estimate
what might be the crustal field contribution, we assume that the
magnetic crust is 35 km thick (Padovan et al., 2015) and consider
that the TRM susceptibility of the rocks is about 0.01 SI (Johnson
et al., 2015). A model for the crustal field power spectrum
(Thébault and Vervelidou et al., 2015) indicates that the crustal
field at Mercury’s mean radius should not exceed 1–5 nT RMS. This
is comparable to the contributions of R-SCHA degrees 11 to 18
(about 2.3 nT RMS). However, such a value is much smaller than
the misfit between the regional model and the measurements.
The Student’s t-test on the estimated parameters also indicates
that more than 85% of the regional coefficients at equivalent
degrees na

k larger than 11 are statistically not significant at 95%.
Their omission in the regional model would not statistically
degrade the representation of the field.

A visual observation of Mercury’s surface suggests that a variety
of geological processes such as volcanism and cratering could have
produced magnetization contrasts as is the case on Mars and the
Moon [e.g., Langlais et al., 2010]. Johnson et al. (2015), Hood
(2015a,b) analysed the lowest altitude MESSENGER’s measure-
ments and detected only very small scale magnetic crustal signa-
tures so far. These observations are in contradiction with a
hypothetical existence of large scale and coherent magnetic crustal
structures starting at equivalent degrees larger than 11. We con-
clude that the magnetic field contributions at degrees and orders
larger than 11 are caused by the amplification of noise with the
downward continuation of the model and that there is no evidence
of large spatial scale (>850 km) remanent crustal field at Mercury.
4.3. Physical domain analyses

We display the magnetic field model at the CMB and the Mer-
cury’s mean spherical surface over the Northern hemisphere in
Fig. (6). This model includes the Mehler contributions and all inter-
nal and external regional field contributions up to equivalent R-
SCHA degree 11 (see previous subsection). The magnetic field is
strongly axisymmetric. The North dip pole is located at
87�N;94�W . The most striking feature in these plots is the absence
of small scale structures at the CMB. This observation is not novel
but relied so far on SH models truncated to very low degrees and
orders. The synthetic example discussed above (Fig. 2) shows that
even a weak contribution of 20 nT RMS distributed randomly
among the Gauss coefficients is sufficient to produce a model with
small scale structures clearly apparent and detectable at the CMB.



Fig. 6. Top: Magnetic field components of the internal and external R-SCHA model at the Mercury’s mean surface over the Northern hemisphere. Bottom: same as on top but
at 400 km depth. The dotted lines in the rightmost column indicate the location of the estimated magnetic equator.
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Here, what is observed is a large scale, zonal, and smooth Hermean
magnetic field.

The absence of small scale structures confirms that the model is
stable and not strongly contaminated by noise or possible small
scale external fields. In particular, there are no signature of the
magnetic field created by FACs near the Mercury’s northern mag-
netospheric cusp or above 60�N in any component of the model.
The only small scale structures observed at the CMB on the Y com-
ponent near the pole can be attribute to the 10�polar gap in the
measurements. The absence of signature from FACs is further con-
firmed in Fig. (7) where internal Legendre and Mehler contribu-
tions are plotted separately from the external field contributions
at the CMB. The external field contribution is essentially large scale
as inferred from the spectrum Fig. (5-bottom).

4.4. The magnetic equator

The classical definition of the magnetic dip, or magnetic equa-
tor, is the region where the magnetic field inclination
I ¼ atanðZ=HÞ is zero, with H being the intensity of the horizontal
magnetic field and Z its vertical component [e.g., Thébault et al.,
2015, their Eq. 5]. For simplification here we identify the magnetic
dip equator as regions where the absolute value of the vertical
magnetic field component (Z) is less than the arbitrary value of
2 nT. This definition implies that the Mercury body-centered radial
component is zero at the equator. This differs from the definition
advocated by (Anderson et al., 2011) who choose to identify the
magnetic equator from the zero crossing of the cyclindrical radial
component of the magnetic field.

The regional model computed at the location of all selected
measurements predicts the location of the magnetic equator
around latitude 14:9�N � 2:2�on average within the cone. This esti-
mate is in close agreement with the mode of the magnetic equator
distribution found at latitude 15:8�N � 5:8� that is estimated from
the vertical magnetic field of the MESSENGER measurements
selected for this analysis. Here the mode of the distribution is pre-
ferred over other statistical averages such as the mean or the med-
ian because the real dip equator distribution is skewed toward
northern latitudes at all altitudes (see the Fig. 8). The location of
the magnetic dip equator varies with respect to the altitude in
the spherical MBF reference frame and we verify that the mode
of the real distribution (shaded grey in Fig. 8) is well predicted
by the R-SCHA model (black curve). The location of the dip equator
is better constrained by the measurements between 250 and
800 km. The uncertainty of its numerical estimation increases at
larger altitudes where the effects of the dynamic magnetospheric
fields are more prominent.

Even though global internal and external contributions can only
be approximately separated with the regional model, we also dis-
play in Fig. 8 the magnetic dip equator inferred from the internal
(red curve) and external (blue curve) regional parts. The 2r error
bars of the internal and external field components start overlap-
ping from 900 km altitude. They intersect around 1050 km altitude
(1:43RMÞ, where they predict a dip equator at the same average lat-
itude of about 11:5�N � 2:0. This feature is consistent with the
average location of the solar wind standoff distance at Mercury
estimated at 1:41RM by Johnson et al., 2012) and compares well
with the estimates of Zhong et al. (2015), between 1.38RM and
1.65RM at aphelion and perihelion, respectively. As shown in
Fig. 8 (yellow curve), this estimate is also in agreement with the
magnetic dip equator estimated to be at 11:9N � 0:3 at 1:38RM at
high altitudes in the SH model coefficients of Anderson et al.
(2012). Finally, it is also consistent with the expectation that the
shape of the magnetosphere should be symmetric with respect to
the internal magnetic field at high altitudes (Anderson et al.,
2011; Anderson et al., 2012; Johnson et al., 2012).



Fig. 7. Separation of the full model displayed in the Fig. (6) at the CMB into external (top) and internal (bottom) regional contributions for the North (left), East (center) and
vertical (right) components. Note that the labels on the colorscale are different for the external and internal parts. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. North geographic latitude of the magnetic dip equator as a function of the
altitude between 0 and 1200 km altitude estimated from the measurements
(probability density in grey), from the full regional model (in black), from its
internal component (in red) and from its external component (in blue). The error
bars are the 2r estimates. The yellow curve shows the location of the magnetic
equator estimated from the SH model of Anderson et al. (2012). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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5. Spherical harmonics models

We finally transform the regional model into a truncated global
SH model. We estimate only the low degree coefficients that are
the least correlated over the northern hemisphere as discussed in
Section (3). Internal and external Gauss coefficients are considered.
We compute three different global SH models. The first one (M1 in
Table 3) is derived using only the internal contributions of the
regional model. This model should thus be associated with very
low external field Gauss coefficients provided that the regional
model separation into its internal and external contributions in
Fig. (7) is satisfactory. The second inversion (M2) uses all contribu-
tions of the regional model. The third model (M3) uses the same
contributions as M2 but is derived after putting 20 times more
weight on the measurements located around the magnetic dip
equator (defined as the region where the vertical component Zj j<
2 nT). The last column of Table (3) shows the values of the SH
coefficients provided by Anderson et al. (2012) for comparison.
This model is denoted the MA model hereafter. The standard devi-
ation between the regional model and the M1, M2 and M3 trun-
cated SH models is about 8.5 nT in all three cases with a small
bias of 0.5 nT in the mean residual. A small bias in the residual
indicates that the model truncated to low degree do not account
for all the spatial structures that are depicted by the high resolu-
tion regional model. The low value estimated for the external SH
coefficient of model M1 (q0

1 ¼ 2:8 nT) provides some confidence
that the regional modelling approach indeed separates the field
into internal and external contributions. The internal SH coeffi-
cients of model M1 and M2 are of comparable magnitude even
though they are estimated from two different contributions of
the regional model. These two models, and in particular the M2
model, are significantly different from the model MA for which
the dipole to quadrupole ratio is about 0.4. The model M2 exhibits
a smaller ratio of 0.27. The energy distributes differently among
the SH degrees as model M2 has significantly more power on the
octupole term and less power on the quadrupole term than the
MA model. Interestingly, the three models provide the same esti-



Table 3
Estimated SH Gauss coefficients for the internal and external parts (in unit of nT) and
dipole tilt (in unit of �). Three models are estimated. M1 is derived only from Mehler
and Legendre internal regional contributions. M2 is derived from the full regional
model and M3 is derived from the full regional model after putting more constrain on
the magnetic dip equator. The coefficients of model M4 provided by Anderson et al.
(2012) are shown for comparison. The error bars are the 3r standard estimates.

Internal M1 M2 M3 M4

g01 �213.2 ± 6.0 �213.6 ± 6.0 �198.8 ± 6.9 �190 ± 10

g11 1.2 ± 0.4 0.9 ± 0.4 0.9 ± 0.9 n/a

h1
1

1.6 ± 0.8 1.5 ± 0.8 1.8 ± 0.9 n/a

g02 �56.5 ± 5.5 �57.7 ± 3.7 �77.6 ± 5.9 �74.6 ± 4.0

g03 �34.0 ± 3.5 �35.8 ± 3.5 �20.6 ± 5.9 �22.0 ± 1.3

g05 2.7 ± 0.8 2.1 ± 0.8 0.6 ± 0.9 n/a

External – – – –

q01 2.8 ± 1.2 �39.7 ± 1.2 �36.7 ± 1.3 n/a

q11 0.3 ± 0.4 0.1 ± 0.4 0.2 ± 0.6 n/a

s11 �0.1 ± 0.4 �0.1 ± 0.4 �0.2 ± 0.6 n/a

g02=g
0
1 ratio 0.27 0.27 0.39 0.39

g03=g
0
1 ratio 0.16 0.17 0.10 0.12

Dipole tilt 0.6 0.6 0.6 0.8
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mation of 0.6� for the mean dipole tilt. The results obtained for
model M3 shows the importance of putting more weight on the
location of the magnetic dip equator than elsewhere. Therefore,
the observed difference in the Gauss coefficients between M2
and MA could be explained by this strong constraint used in the
derivation of the MA model (Anderson et al., 2012).
6. Conclusion

In this paper we derived a regional model of the Hermean mag-
netic field using a regional modelling technique and a selection of
the MESSENGERs measurements within the magnetospheric cavity
from 2011 until 2015. The model confirms most of the structures
observed at Mercury at high altitudes. The complete lack of small
scale structures at the top the core is the most striking feature con-
firmed by this study. If Mercury sustains an active dynamo within
its entire outer liquid core it should exhibit small scales magnetic
field structures at the CMB. This complete absence of faint struc-
tures as well as the decreasing shape of the regional power spec-
trum at the CMB are strong arguments in favor of the possible
existence of a stratified layer at the top of the core that would filter
out smaller scales (Christensen, 2006). This assumes, of course,
that the observed field is generated by a deep-seated dynamo. This
characteristic is not an artefact introduced by some truncated SH
representation but a genuine feature of the magnetic field. We also
show that the transformation of the regional model into SH Gauss
coefficients is not unique because of parameters covariance. This
limitation is caused by the distribution of magnetic field measure-
ments available only over the northern hemisphere of Mercury. As
a result, the estimated SH models are necessarily hypothesis-
dependent. For example, the truncated SH model of Anderson
et al. (2012) is predominantly constrained by the location of the
magnetic dip equator measured by high altitude measurements.
This constrain seems to have a significant impact on the estimated
ratio of the zonal dipole and quadrupole SH terms.

Our results illustrate that if the co-estimation of the zonal inter-
nal quadrupole and the external dipole terms are important to pre-
serve the most robust features detected by the MESSENGER’s
measurements, a different picture of Mercury’s magnetic field
can be obtained in SH by relaxing this constrain. In such a case,
the maximum likelihood SH model indicates that the axial quadru-
pole to axial dipole ratio is significantly reduced from 0.4 to 0.27.
This result could broaden the class of acceptable dynamo regimes
for Mercury by perhaps alleviating the need for heterogeneous
heat flux at the CMB (Cao et al. et al., 2014; Wicht and Heyner,
2014). The model of Anderson et al. (2012) is therefore probably
a suitable model to estimate the location of the magnetic dip pole
but, in our approach, is statistically not the most probable one for
representing the magnetic field, in particular at the CMB. However,
even if the SH models are by construction currently uncertain, the
regional model downward continued to the CMB could represent
an attractive constraint to dynamo simulations.
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