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Abstract

Flow in the fluid outer core just below the core-mantle boundary is inferred from ge-

omagnetic secular variation data, assuming frozen magnetic flux, tangential geostrophy,

and a new physical assumption termed helical flow. Helical flow, in which tangential di-

vergence correlates with radial vorticity, removes non-uniqueness in the inversion of the

magnetic induction equation. My flow solutions using geomagnetic field models from the

2000 Oersted and 1980 Magsat satellites resemble previous flow models, but contain more

flow along contours of radial magnetic field. I invert geomagnetic secular variation be-

tween 1895-1985 to isolate the time-average and time-dependent parts of the flow. The

most prominent flow structure is a large anti-cyclonic vortex in the southern hemisphere.

Time-average zonal flow outside the inner core tangent cylinder is generally westward in

the southern hemisphere but nearly zero in the northern. Westward polar vortices occur

inside the tangent cylinder. Mantle driving seems responsible for the mid-latitude asym-

metry in the zonal core flow; core driving is responsible for the flow at high latitudes.

Changes in the core’s angular momentum calculated from my time-dependent core flow

agree well with decade-scale length-of-day measurements. I fit the time-dependent flow to
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a torsional oscillations model with periods �� and �� years. I test the quality of my core

flow imaging method by inverting synthetic magnetic secular variation data from numerical

dynamo models, and find that my method delineates most large-scale flow features. The

correlation coefficient is large for a dynamo case with large-scale flow and magnetic field

pattern, but degrades substantially in more complex cases. Including tangential magnetic

diffusion improves flow recovery; however, unmodeled radial diffusion and data trunca-

tion effects cause severe artifacts. Finally, I combine geomagnetic secular variation data,

time-dependent core flow, and dipole moment time-evolution equations to identify mech-

anisms of geomagnetic dipole moment change between 1895-1985. Meridional advection

and radial magnetic diffusion are comparable and account for essentially all the observed

moment decrease. Between 1895-1965, effects of tangential advection and radial diffusion

on the equatorial moment cancel, allowing the geomagnetic tilt to remain nearly constant.

Since 1970, the two mechanisms have both reduced the equatorial moment, causing the tilt

decrease.

Advisor: Peter Olson

Reader: Thomas W. N. Haine
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Chapter 1

Geophysical background

1.1 The interior of the Earth

The internal structure of the Earth is known from seismology. Earthquakes generate

compressional (P) and shear (S) waves which refract and reflect as they propagate through

Earth’s interior. Inversions of the observed seismic waves travel-times have been used to

construct models of the interior of the Earth.

A good first approximation model for the interior of the Earth is radially-symmetric

layers. The Earth is composed of three main regions: Solid mantle and crust, liquid outer

core and solid inner core (Fig. 1.1a). The outer core is known to be liquid because shear

waves do not propagate through that region. The core-mantle boundary is located ���� km

below the Earth’s surface, and the inner-core boundary is located at a depth of ���� km.

Fig. 1.1c shows the Earth’s density profile according to the Preliminary Earth Model

(PREM; Dziewonski and Anderson, 1981). The density discontinuities at ��� and ���

km depths are due to crystallographic changes. The density discontinuity across the core-

mantle boundary is due to a change in composition there; the overlying mantle is mostly

high-pressure silicate and oxide, whereas the outer core is mostly iron and iron alloys. The
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Figure 1.1: The radial structure of the Earth by main sections (a), seismic velocities (b), and
density (c) based on PREM (Dziewonski and Anderson, 1981). In (b) the solid line is seis-
mic P-wave velocity, and the dashed line is seismic S-wave velocity. The crust is evident by
the immediate discontinuity below the surface in (b) and (c). Dotted lines denote disconti-
nuities: The ��� km and ��� km mantle discontinuities define the transition zone between
the above upper mantle and the lower mantle below; the core-mantle boundary separates
the silicate-oxide solid mantle and the liquid metallic core; and the inner-core boundary
separates the liquid outer core from the solid inner core. Pressure values at the core-mantle
boundary and inner-core boundary are given in the figure (modified from Shearer, 2000).
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density discontinuity across the inner-core boundary is due to a lower concentration of light

elements in the inner core with respect to the outer core and the solid-liquid phase change.

Melting temperature of iron at the core-mantle boundary pressure and freezing temperature

of iron at the inner-core boundary pressure set constraints on core temperatures. Still, the

temperatures at the core are not very well-known. Table 1.1 summarizes some of the main

parameters of the core.

Region � (km) � (kg/m�) � (Pa) � (m/s�) � (k)
above CMB ����� ������� �������� ����� ���� ��
below CMB ����� ������ �������� ����� ���� ��
above ICB ������ ������� ������� ���� ���� ���
below ICB ������ ������ ������� ���� ���� ���

Table 1.1: Density (�), pressure (� ), and gravity (�) from PREM (Dziewonski and An-
derson, 1981), and temperature (� ) estimates including uncertainties (Poirier, 2000), for
Earth’s core. CMB is the core-mantle boundary, ICB is the inner-core boundary, and � is
the distance from the center of the Earth.

1.2 Core properties

The composition of the core is known from the abundance of elements on Earth, which

is inferred from chemical analysis of meteorites that were found on the surface of the Earth.

The core is mostly composed of iron and about ���� nickel (Poirier, 2000). However, the

density of pure iron liquid at core pressure and temperature is about ��� higher than the

density of the outer core. Therefore, lighter elements must be present in the core. Leading

candidates for these elements include O, Si, S, H, C and K Merrill et al., 1998; Poirier,

2000). For example, Allegre et al. (1995) constructed a compositional model of the core

with ��� Si, ��� S, and ���� O. The density of pure iron is about  � �� higher than

the density of the inner core, suggesting that there are some light elements (though less)

in the inner core as well. Light elements are differentiated from the inner core to the outer
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core as the inner-core boundary freezes.

Estimates for the transport properties of the core are obtained from high-pressure min-

eral physics experiments and theory. Because the core is mostly metallic, its electrical

conductivity is relatively high. The liquid core has a relatively low viscosity, i.e. the fluid

flow at the outer core is very inviscid. The thermal diffusivity of the core is larger than the

mantle’s, but the Peclet number at the core is very large, i.e. convection is more dominant

than conduction of heat. Estimates for the transport properties of the outer core are given

in Table 1.2.

Parameter Symbol Core value
Kinematic viscosity & ����� ���	 � ����
Thermal diffusivity ' ����� ���	 � ����
Magnetic diffusivity � ���� �

Table 1.2: Estimated range of values for the transport properties of the outer core in m�/sec.
The kinematic viscosity is inferred from the dynamic viscosity (Poirier, 2000) and the
density at the top of the core (Dziewonski and Anderson, 1981); the thermal and magnetic
diffusivities are taken from Poirier (2000).

1.3 Surface versus core geomagnetic field

The Earth’s near surface can generally be approximated as an electromagnetic insulator,

i.e. no electrical currents are present, and therefore the magnetic field � is a conservative

vector field

� � ��( � (1.1)

where ( is some scalar potential. The geomagnetic field induced by internal sources can

be represented by a sum of spherical harmonic coefficients (Merrill et al., 1998)

( �
�

)�

��
���

��
���

�
�

�
	�����

� ���� �	��
�
� ������ ��� �����	 � (1.2)

4



where � is Earth’s radius, )� is free space permeability, (�, �, �) are spherical coordinates,

��
� ���� �	 are the associated Schmidt-normalized Legendre polynomials, and the Gauss

coefficients are ��� and ��� . Equation (1.2) allows for downward continuation of a given

geomagnetic field model at the Earth’s surface (� � �) to the core-mantle boundary (� � �,

where � is the core’s radius).

Fig. 1.2 compares the radial component of the geomagnetic field on the Earth’s surface

and the field at the core-mantle boundary. The surface field is much smoother than the

core field; the first is to a good approximation an inclined dipole with less than ��� non-

dipole contributions, whereas the latter has significant non-dipole features. For example,

areas with reversed magnetic polarity at the core-mantle boundary, appear with “normal”

polarity and reduced strength at the Earth’s surface.

1.4 Recent geomagnetic data - satellites

The 1980 Magsat and 2000�ersted magnetic satellite missions provided high-resolution

global-coverage magnetic field data sets. These satellite missions were used to construct

high-quality magnetic field models at the core-mantle boundary for 1980 and 2000. The

geomagnetic secular variation inferred by the combination of these models was used to

construct for the first time a small-scale satellite-data-derived core flow model (Hulot et al.,

2002).

The 1980 US Magsat satellite was the first mission launched to map the geomagnetic

field (Langel et al., 1980). The data was collected during two magnetically quiet days in

5-6 of November, 1979. The satellite was launched into a low-altitude, near-polar orbit.

Initial orbital parameters were ����� km apogee, ���� km perigee, and �����Æ inclination.

The magnetometers had accuracy of �� nT. Magsat collected data with extensive global

coverage; all except �� of ��� ��Æ � ��Æ blocks contained at least one data point. The
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core magnetic field model has been truncated at spherical harmonic degree 13 to remove

effects of crustal magnetization. Comparison of the Magsat geomagnetic field model with

previous models obtained from surface observatories verified the ongoing decrease of the

geomagnetic dipole moment at a rate of �� nT/yr.

Twenty years later, the 2000 Danish �ersted satellite provided the highest-quality geo-

magnetic data so far (Olsen et al., 2000). This data was obtained during quiet geomagnetic

conditions around January 1, 2000. �ersted was launched in a near polar orbit. Initial

orbital parameters were ��� km apogee, �� km perigee, and ����Æ inclination. The model

used 2148 scalar data points and 3957 vector triplets. The internal source field is expanded

to spherical harmonic degree 19, but only the expansion up to degree 14 is considered ro-

bust due to contamination by crustal magnetization at higher degrees. Largest residuals

with respect to surface observations appeared in the southern polar cap due to summer

ionospheric currents. The �ersted model provided a firm basis for studies of the iono-

spheric, magnetospheric, lithospheric and core magnetic fields. According to this model,

the strength of the geomagnetic dipole moment in 2000 is ����� ����*��.

Fig. 1.3 shows the radial magnetic field (a) and secular variation (b) at the core-mantle

boundary derived from the 1980 Magsat and 2000 �ersted satellite models. These maps

have much better resolution and global-coverage than previous maps obtained from surface

observatories. The improvement in the resolution and reliability of these maps is especially

pronounced at regions where less geomagnetic observatories are present, such as polar

regions, southern hemisphere, and the oceans. Note that the typical length-scale in the

radial magnetic field map is larger than the one in the secular variation map.
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Figure 1.3: Radial magnetic field (a) and secular variation (b) in 1990 on the core-mantle
boundary. Grey scale represents absolute values, solid lines are positive, dotted lines are
negative. The 1990 magnetic field is the average of the 2000�ersted and 1980 Magsat field
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1.5 Historical geomagnetic data - observatories

Prior to the satellite era, measurements of the Earth’s magnetic field were collected by

surface-based observatories. Since the advent of complete magnetic field vector measure-

ments, including its intensity (by Gauss at about 1850), magnetic field observations from

surface observatories worldwide have been combined to construct maps of the main geo-

magnetic field, which can be downward continued to the core-mantle boundary using (1.2).

Increasing number of magnetic observatories with time have improved global-coverage and

resolution of magnetic field models.

I use the time-dependent model of Bloxham and Jackson (1992) for the radial compo-

nent of the magnetic field on the core-mantle boundary ���� ��  	 truncated at spherical

harmonic degree 14. The model extends from 1690 to 1990 with increasing uncertainty at

older times; I concentrate on the time interval 1890-1990. This field model was constructed

by fitting the magnetic observatory annual means and Magsat satellite data using spherical

harmonics for spatial representation and cubic B-splines for the temporal representation.

1.6 Thesis statement

This thesis deals with the physical, numerical and technical problems in geomagnetic

secular variation inversion, the geomagnetic imaging of fluid motion in the core. I use

land-based plus satellite observations of geomagnetic secular variation and dynamo theory

to construct models of fluid motion at the top of the core. I explore the geophysical im-

plications of these core flow models in terms of magnetohydrodynamics at the outer core

and core-mantle interactions. The issues addressed in this thesis include fluid dynamics at

the top of the core, mantle control on core flow, core-mantle angular momentum exchange,

and mechanisms of geomagnetic dipole moment changes.

The outline of the thesis is as follows. In chapter 2 I briefly review the governing
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equations of dynamo theory and key concepts in numerical dynamos. In chapter 3 I in-

troduce my method for imaging core flow from geomagnetic secular variation data (Amit

and Olson, 2004). In chapter 4 I apply this method for the historical geomagnetic secular

variation data, and I interpret the flow in terms of time-average and time-dependent parts;

time-average core flow is modeled by thermal wind with mantle and core origins, whereas

time-dependent core flow is interpreted in terms of angular momentum exchange between

the core and the mantle (Amit and Olson, 2005). The inversion method is tested using syn-

thetic data from self-consistent numerical dynamos in chapter 5. In chapter 6 I identify and

quantify dynamo mechanisms for rapid geomagnetic dipole moment changes. I summarize

my main findings in chapter 7, and I suggest directions for future work in chapter 8.
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Chapter 2

Dynamo theory

2.1 Maxwell’s equations of electromagnetism

The theory of electrodynamics is summarized by Maxwell’s equations (e.g. Griffiths,

1999). Here I review these equations and the magnetohydrodynamic approximations, and

briefly discuss their physical meaning. Maxwell’s equations are combined to yield the

magnetic induction equation.

Magnetic field is induced by electric currents and temporal changes in electric field

according to the Ampere-Maxwell law

�� � � )�
�+ � )�,�

� ��

� 
� (2.1)

where � is magnetic field, )� � �! ����� N/A� is free-space permeability, �+ is electric cur-

rent density, ,� � ���� � ����� C�/Nm� is free-space permittivity, �� is electric field, and  is

time. In the magnetohydrodynamic domain (as opposed to the plasma domain), the typical

electric field frequency is much smaller than the mean collision frequency, i.e. the typical

time-scale is larger the time for electromagnetic waves to cross a region, and the second

term on the right hand side of (2.1) can be neglected (Hide and Roberts, 1961; Moffatt,

1978; Merrill et al., 1998; Davidson, 2001). Therefore, in core magnetohydrodynamics,
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(2.1) is approximated by the pre-Maxwell Ampere’s law

�� � � )�
�+ � (2.2)

The current density is related to the electromagnetic fields and the fluid velocity �" by Ohm’s

law

�+ � -� �� � �"� �	 � (2.3)

where - is electric conductivity. Electric field is induced by temporal changes in the mag-

netic field according to Faraday’s law

�� �� � �� �

� 
� (2.4)

Equations (2.2) - (2.4) contain four variable fields: �, ��, �+ , and �". Elimination of �� and �+

yields (Moffatt, 1978; Merrill et al., 1998; Roberts and Glatzmaier, 2000; Davidson, 2001;

Kono and Roberts, 2002)

� �

� 
� �� ��"� �	 � ��� � � (2.5)

where � � ��)�- is the magnetic diffusivity.

Equation (2.5), the outcome of Maxwell’s equations of electromagnetism with the mag-

netohydrodynamic assumption, is known as the magnetic induction equation. According

to this equation, magnetic field is advected by the flow and diffused by Ohmic dissipation.

The ratio of magnetic field advection to diffusion is estimated by the magnetic Reynolds

number (Bondi and Gold, 1950)

�� �
�� � ��� � �	�
���� �� � �.

�
� (2.6)

where � , . and � are the typical velocity, length-scale and magnetic diffusivity, respec-

tively. Hide and Roberts (1961) estimated based on the rate of the westward drift of the

observed geomagnetic field that �� �� � in the core. Large values of �� indicate that

magnetic field lines are frozen in the flow (Roberts and Scott, 1965).
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2.2 Magnetohydrodynamics governing equations

Larmor (1919) was the first to suggest that the geomagnetic field is generated by dy-

namo action in Earth’s liquid outer core. Since then dynamo theory has advanced signifi-

cantly. Cowling (1934) proved that an axisymmetric magnetic field cannot be sustained by

dynamo action. Elsasser (1946) estimated the geomagnetic field decay time and the mag-

nitude of core flow based on theoretical considerations. Backus (1958) showed that there

exist steady flows that maintain the magnetic field against Ohmic losses (the so-called kine-

matic dynamos), and he provided the conditions on such flows. In the early 1960s dynamo

theory was well-established: Electric currents in the core induce magnetic field, and the in-

teraction of fluid flow with the magnetic field produces electric currents (Hide and Roberts,

1961). Roberts (1972) found analytical and numerical kinematic dynamos with 2D period-

icity. It is now generally accepted that rotating convection in the conducting outer core shell

maintains the geomagnetic field against Ohmic losses (Moffatt, 1978; Merrill et al., 1998;

Olson et al., 1999; Roberts and Glatzmaier, 2000; Davidson, 2001; Glatzmaier, 2002; Kono

and Roberts, 2002).

Here I review the governing equations of dynamo theory. The magnetic induction equa-

tion derived in the previous section describes the evolution of magnetic field. Conservation

of momentum, heat, and mass complete the set of governing equations for the evolution

of the velocity field and temperature. I present the full dimensional set of magnetohydro-

dynamics equations and their assumptions. I introduce scales to obtain the corresponding

non-dimensional equations and their control parameters.

Several key assumptions are commonly used to simplify the dynamo equations. First,

the fluid is assumed incompressible, i.e. conservation of mass implies non-divergent flow.

Second, the Boussinesq approximation is applied, i.e. density fluctuations from a mean

state are neglected, except for the buoyancy term. The Boussinesq approximation intro-
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duces an estimated inaccuracy of ��� to the output of numerical dynamos: Velocity, mag-

netic field and temperature (Roberts and Glatzmaier, 2000). Third, an equation of state

is assumed to relate pressure, density and temperature. The incompressible Boussinesq

magnetic (i.e. with Lorentz force) conservation of momentum (Navier-Stokes) equation in

a rotating frame (i.e. with Coriolis force) is (Hide and Roberts, 1961; Braginsky, 1997;

Merrill et al., 1998; Kono and Roberts, 2002)

��
��"

� 
� �" � ��"� &���"	 � ����� �"��� � � �/��� � � �+ � � � (2.7)

where � is mean density,  is time, & is kinematic viscosity,� is the rotation vector (pointing

in the direction of the rotation axis), � � is pressure perturbation from its mean, / is thermal

expansivity, �� is gravitational acceleration vector (pointing radially outwards), and � � is

temperature perturbation from its mean. The terms in (2.7) from second on left to right

represent forces acting on the fluid: Inertial, viscous, Coriolis (due to the rotation of the

Earth), pressure gradient, buoyancy, and magnetic Lorentz forces. In the core, two sources

of buoyancy exist - thermal and compositional. The fluid is thermally-buoyant because

the temperature increases with depth, and chemically-buoyant because light elements are

being released at the inner-core boundary as it freezes (Braginsky, 1997). Loper (1978) ar-

gued that a gravitationally-powered dynamo, i.e. dominated by compositional convection,

is more likely than a thermally-powered dynamo. Only thermal buoyancy is considered

in (2.7); nevertheless the main effect of buoyancy is captured. The conservation of heat

equation is
��

� 
� �" � �� � '��� � (2.8)

where ' is thermal diffusivity. According to (2.8), temporal changes in temperature are

due to advection of heat by the flow and thermal diffusion. Note that no heat sources (e.g.

radioactive) are included in (2.8). The conservation of mass (continuity) equation for an
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incompressible fluid is

� � �" � � � (2.9)

and the magnetic field is non-divergent

� � � � � � (2.10)

Equations (2.5) and (2.7) - (2.10) form the complete set of dimensional magnetohydro-

dynamics equations. These equations are scaled (Table 2.1) to obtain the non-dimensional

governing equations (Olson et al., 1999)

Variable Symbol Scaling
Length 0 �� ��

Time t 0��&
Temperature � ��

Pressure � �&�
Velocity � &��0

Magnetic field  ���)��	
���

Current density + �����)�0
�	���

Table 2.1: Scaling laws for the dynamo equations (from Olson et al., 1999). � is Earth’s
rotation rate, � is core’s radius and �� is inner core radius.

���
��"

� 
� �" � ��"����"	 � ��1 � �"��� � ��

��

�
� �

�

��
��� �	� � (2.11)

� �

� 
� �� ��"� �	 �

�

��
�� � (2.12)

��

� 
� �" � �� �

�

��
��� (2.13)

� � �" � � (2.14)

� � � � � � (2.15)

where �1 is a unit vector in the direction of the rotation axis and �� is the position vector. Four

non-dimensional parameters in (5.1) - (5.5) control the dynamo action. The (modified)
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Rayleigh number represents the strength of convection

�� �
/����0

&�
� (2.16)

where �� is the gravitational acceleration on the core-mantle boundary, and �� is the tem-

perature difference across the outer core. The Ekman number is the ratio of viscous to

Coriolis forces

�� �
&

�0�
� (2.17)

the Prandtl number is the ratio of kinematic viscosity to thermal diffusivity

�� �
&

'
� (2.18)

and the magnetic Prandtl number is the ratio of kinematic viscosity to magnetic diffusivity

�� �
&

�
� (2.19)

2.3 Numerical dynamos

Glatzmaier and Roberts (1995) were the first to report a successful 3D numerical dy-

namo. Numerical dynamos model magnetic field generation by convection in a 3D rotating

spherical shell (Olson et al., 1999; Roberts and Glatzmaier, 2000; Glatzmaier, 2002; Kono

and Roberts, 2002). These models solve (5.1) - (5.5) for the magnetic field, velocity and

temperature. How well do numerical dynamos simulate the geodynamo? To address this

question, I compare the values of the control parameters as well as some output parameters

from the numerical dynamos with the ones estimated for Earth’s core.

Table 2.2 compares values of non-dimensional numbers from numerical dynamos with

Earth-like values. The models’ input parameters are the Rayleigh, Ekman, Prandtl, and

magnetic Prandtl numbers. The output parameters are the magnetic Reynolds number (2.6),
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Number Symbol Numerical dynamos Core
Rayleigh �� ������ ���	� ��� ����

Ekman �� ���� �	� ���	 ����	

Prandtl �� � ���
Magnetic Prandtl �� �� � �� ����

Magnetic Reynolds �� ����� ��� 2����	
Elsasser � ����� �� 	 �

Table 2.2: Comparison of parameters in numerical dynamos and estimated core values. Nu-
merical dynamos values are from Christensen et al. (1998, 1999, 2001), Olson et al. (1999),
and Kutzner and Christensen (2000); core values are from Kono and Roberts (2002), except
for Elsasser number from Merrill et al. (1998).

and the Elsasser number, which is the ratio of Lorentz to Coriolis forces

� �
-�

��
� (2.20)

where  is typical magnetic field and � is density.

From Table 2.2 it is clear that numerical dynamos do not operate at core-like values.

Core-like values have too small diffusivities (see Table 2.2). Therefore, technical compu-

tational limitations unable numerical dynamos to reach core-like parameter regime (Glatz-

maier, 2002). More specifically, convection is too weak (small �� number) and viscous

effects are too strong (large �� number) in numerical dynamos. However, the models’

output seems to provide the correct order of magnitude for the Elsasser number and mag-

netic Reynolds number. This result is encouraging, because it means that despite using

inadequate input parameters, numerical dynamos reproduce advective-dominant magnetic

field evolution and the appropriate balance of Lorentz and Coriolis forces as expected in

the core.
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Chapter 3

Helical core flow from geomagnetic

secular variation

3.1 Introduction

Mapping the flow in Earth’s liquid outer core places constraints on the geodynamo, the

thermal structure of the core, and the nature of core-mantle coupling. Geomagnetic data

provided by the Danish �ersted satellite in 2000, combined with the data from the US

Magsat satellite in 1980, give a global model of the Earth’s magnetic field and its secular

variation on the core-mantle boundary up to spherical harmonic degree 14 for imaging of

the fluid flow below the core-mantle boundary. Here I present a method that combines

helical flow and tangential geostrophy to obtain the fluid motion below the core-mantle

boundary consistent with the secular variation. We compare results from different types

of physical assumptions, such as tangential geostrophy, strong helicity, weak helicity and

columnar flow.

My solution method is novel in several respects. First, I formulate a general expres-

sion for the tangential divergence term that incorporates inertial effects such as tangen-
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tial geostrophy with effects due to viscous and buoyancy forces that produce helical flow.

Second, my method uses a grid-based finite difference representation, as opposed to the

conventional spectral methods in which the flow potentials are represented in spherical

harmonics.

Non-uniqueness is a major problem in the inversion of fluid flow at the top of the core

from geomagnetic secular variation data. Backus (1968) showed that, without specifying

the tangential divergence, the flow is non-unique. Backus and LeMouël (1986) showed that

the tangential geostrophy assumption reduces the non-uniqueness, but does not eliminate

it. My helical flow assumption removes this non-uniqueness.

The outline of the chapter is as follows. In section 2 I review the general theory and

previous frozen flux inversions of geomagnetic secular variation. In section 3 I describe the

theoretical background for my method, including my physical assumptions. In section 4 I

describe my numerical technique and present results of a test case to verify its reliability. In

section 5 I present my results, including a sensitivity test, a resolution test and comparison

between results from different physical assumptions. My main findings are summarized in

section 6.

3.2 Frozen flux theory

3.2.1 The radial magnetic induction equation at the top of the core

Properties of the flow in the liquid outer core are inferred from geomagnetic secular

variation, assuming the magnetic field acts like a tracer. The radial component of the mag-

netic induction equation (2.5), assuming that the radial velocity vanishes just below the

core-mantle boundary, is

��

� 
� �"� � �� ���� � �"� � ��

�

��
��

���
����	 ���

��	 (3.1)
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where � is the radial component of the magnetic field,  is time, �"� is the fluid velocity tan-

gent to the core-mantle boundary, � is the magnetic diffusivity and��
� � ��� �

��
�
��
��� �

��
	.

Throughout the chapter, the subscript � refers to tangential ��, �	 coordinates. To infer core

flow using (5.10), the “tracer” � and its time derivative ���� are assumed known, and

the fluid velocity �"� is unknown.

Previous studies generally assumed frozen flux, in which the diffusion of magnetic field

is neglected in comparison with the advection of magnetic field by the flow. The frozen flux

hypothesis is assumed valid because the magnetic diffusion time scale, 3� � .���, is much

longer than the advection time, 3� � .�� , where L, U and � are the typical length scale,

velocity and magnetic diffusivity for the Earth’s core. The ratio of these time scales in

(5.10) yields
3�
3�

�
��"� � ���
����

��� �
�.

�
� �� (3.2)

where �� is the magnetic Reynolds number. Using . � ��� m, � � � � ���
 m/s and

� � � m�/s gives 3� � �� ��� yr and 3� � �� yr, i.e. �� � ���, large enough so that

the effects of magnetic diffusion can be neglected to a first approximation (e.g. Bloxham,

1989).

According to the Helmholtz representation, the tangential velocity can be written as the

sum of a tangentially non-divergent toroidal velocity and a tangentially divergent poloidal

velocity,

�"� � �"��� � �"��� (3.3)

In a spherical coordinate system ��� �� �	, the toroidal velocity can be expressed by a

streamfunction� and the tangential poloidal velocity can be expressed by a scalar potential

� in the following way:

�"��� � ����� (3.4)

�"��� � ��� (3.5)
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where �� is a unit radial vector. In terms of their components, the toroidal and poloidal

tangential velocities are

�"�� "		��� � �
�

��45�

��

��
���

�

��

��
	 (3.6)

�"�� "		��� � �
�

�

��

��
�

�

��45�

��

��
	 (3.7)

Using these expressions for the velocities, the radial vorticity in the fluid 6 is given in terms

of the streamfunction � as

6 � �� � � � �"� � ��

�� (3.8)

and the surface divergence of the fluid velocity �� � �"� is given in terms of the scalar

potential � as

�� � �"� � ��

�� (3.9)

Substitution of (3.6) - (3.7) and (3.9) into (5.10) and neglecting magnetic diffusion gives

the radial component of the frozen flux magnetic induction equation in terms of the two

potentials � and �. On the core-mantle boundary (� � �, the radius of the core), (5.10)

becomes

��

� 
�

�

���45�
�
��

��

��

��
� ��

��

��

��
	 �

�

��
�
��

��

��

��
�

�

�45��

��

��

��

��
	 ����

�� � �

(3.10)

The physical interpretation of the terms in (5.12) are as follows. The first term is the secular

variation of the magnetic field. The second and third terms are advection of � by toroidal

and poloidal velocities, respectively. The fourth term represents the effect of upwelling

motions from the interior of the outer core on �.

The core-mantle boundary is usually modeled as a rigid impermeable boundary, in

which case the velocity there is identically zero. However, since � is continuous there,

and the Ekman boundary layer thickness is much smaller than the magnetic boundary layer,

it is assumed that � and ���� vary little through the Ekman boundary layer, and (5.12)
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applies to the flow of the free stream at the top of the core just below the core-mantle

boundary (Bloxham and Jackson, 1991).

3.2.2 Previous studies

Different core flows were obtained in the past due to different regularization meth-

ods, physical assumptions, and data (see Bloxham and Jackson, 1991 for a review of

these). Previously-used spectral methods minimized simultaneously the data residual and

a quadratic function of the parameter vector using a trade-off damping coefficient. Some

previous studies have minimized the kinetic energy to regularize their solutions (Whaler,

1986; Gubbins, 1982). Others minimized the norm of the second derivatives of the flow

(Bloxham, 1989), or the deviation from a decreasing velocity spectra (Gire and LeMouël,

1990). Pais and Hulot (2000) used a regularized method with one covariance matrix for the

data uncertainty and another for the a-priori kinetic energy. They found a small range of

damping coefficients which lead to a misfit in the data residual in agreement with the data

uncertainty, and complies with the energetic requirement.

Previous authors truncated their flow solutions at some spherical harmonic degree. Gire

et al. (1986) derived a low spherical harmonic degree spectrum of motion. Whaler (1986)

pointed out that the disadvantage of previous methods is strong dependency on the velocity

truncation level. Rau et al. (2000) tested their inversion method with synthetic data from

dynamo simulations. For their low-pass filter case, they resolved the flow up to spherical

harmonic degree 5. They concluded that limited resolution due to crustal magnetization,

uncertainties in the physical assumptions, and uncertainties in the methodical constraints

lead to poorly constrained flows.

Different methods and physical assumptions have been used to reduce the non-uniqueness.

Gubbins (1982) assumed a combination of steady flow without upwelling. He argued that

the non-uniqueness is reduced if two separate inversions yield two sufficiently different di-
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rections of velocity. Voorhies (1986) used the steady flow assumption and pointed out that

the non-uniqueness is reduced if � at three different epochs is known. Rau et al. (2000)

argued that the steady flow assumption yields poor fits even in decadal timescales. Another

common way to reduce the non-uniqueness is by specifying the tangential divergence term

in (5.10). The simplest upwelling assumption is, of course, pure toroidal flow: �� ��"� � �.

Without upwelling the non-unique flow component is along �-contours. Whaler (1980)

interpreted relatively small secular variation values at local extrema of � as statistical ev-

idence for pure toroidal flow. Other authors have also concluded that the flow at the top

of the core is purely toroidal. Gubbins (1982) interpreted the apparent upwellings in core

flow models as data uncertainties, while Bloxham (1989) interpreted them as contamina-

tion by radial magnetic diffusion. LeMouël (1984) assumed tangential geostrophy from

the balance between Coriolis and pressure gradient forces below the core-mantle bound-

ary: �� � ��"��7��	 � �. For this assumption the non-unique flow component is along

�� ��� �-contours that do not cross the equator. These ambiguous patches compose 40%

of the core-mantle boundary at 1980 (Bloxham and Jackson, 1991; Chulliat and Hulot,

2000). Rau et al. (2000) concluded that the flow is mostly toroidal and geostrophic. Recent

studies by Pais and Hulot (2000) and Hulot et al. (2002) preferred the tangential geostrophy

assumption.

Some of the main inferences about core flow from previous studies are as follows.

Voorhies (1986) found in pure toroidal flow solutions evidence for Taylor columns in asym-

metric vortices with respect to the equator. Some studies found that pure toroidal flows had

better fits than geostrophic flows (Bloxham, 1989; Bloxham and Jackson, 1991). Bloxham

(1989) observed persistent trans-equatorial flow below Indonesia, in contradiction to the

geostrophic assumption. Whaler (1986) stated that any solution without upwelling yields a

statistically inadequate fit. She remarked that upwelling indicates local convection strength.

A poloidal-toroidal flow solution contains twice as many free parameters as a toroidal flow,
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and thus allows smaller data residuals. Authors that preferred poloidal-toroidal flow over

pure toroidal flow argued that the first is less energetic (Gire et al., 1986), or its data resid-

uals are significantly smaller (Voorhies, 1986). However, the poloidal flow component is

less well determined (Whaler, 1986; Voorhies, 1986). Gire and LeMouël (1990) found an

equatorially-aligned flow compatible with their geostrophic assumption. Rau et al. (2000)

found both toroidal and geostrophic assumptions reasonable, with a preference for the lat-

ter. Gire and LeMouël (1990) concluded that the secular variation reflects the temporal

behavior of the poloidal flow, and the toroidal flow is responsible for exchanging angular

momentum between the core and the mantle. Jault et al. (1988) and Jackson et al. (1993)

found good correlation between changes in the angular momentum of the core (inferred

from core flow inversions) to those inferred from variations in the length of the day. Zat-

man and Bloxham (1997) interpreted time-dependent zonal flows as torsional oscillations.

Rau et al. (2000) stressed that the limitation on the data resolution due to crustal magneti-

zation might cause flow patterns with artifacts. They found that large scale zonal flow and

mid-latitude gyres are the most reliable flow structures, and that they may represent an im-

age of columnar convection outside the tangent cylinder, which is the imaginary cylinder

parallel to the spin axis and circumscribing the equator of the inner core (Aurnou et al.,

2003). Hulot et al. (2002) used the 2000 �ersted and 1980 Magsat satellite geomagnetic

data sets and found higher velocities in the Atlantic hemisphere than in the Pacific one.

They commented that the large secular variations at high latitudes (especially in the north-

ern hemisphere) and below Africa could not be predicted before the �ersted data. Their

non-axisymmetric flow displays vortices around the tangent cylinder.

Different authors’ core flows contain different zonal flows. Gire et al. (1984) found that

a ��� Æ/yr westward drift is the dominant flow motion. Bloxham (1989) found a westward

drift less than ��� Æ/yr. The solution of Voorhies (1986) contains a bulk westward drift with

superimposed jets and gyres. Pais and Hulot (2000) found large zonal angular velocities at
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high latitudes (though not reliable) and an equatorially-antisymmetric zonal flow outside

the tangent cylinder. Hulot et al. (2002) found a westward equatorially-symmetric flow

of � ��� Æ/yr outside the tangent cylinder, and westward polar vortices of � ��� Æ/yr. A

similar polar vortex was found by Olson and Aurnou (1999).

3.3 Physical assumptions for coupling toroidal and poloidal

motions

Equation (5.12) contains two scalar variables, the potentials� and �. In order to invert

this equation for the tangential velocity at the top of the free stream below the core-mantle

boundary given � and ���� , I make one additional assumption to relate the two po-

tentials. I will show that this assumption removes the non-uniqueness from the inversion

problem.

3.3.1 Pure toroidal flow

A trivial way to couple toroidal and poloidal flows is to assume that the flow is purely

toroidal, so that

�� � �"� � � (3.11)

According to this assumption, the surface flow is non-divergent and can be expressed in

terms of the streamfunction only, i.e. all terms with � in (5.12) vanish.

3.3.2 Tangential geostrophy

Another standard way to couple toroidal and poloidal flows is to assume a geostrophic

balance for the tangential components of the fluid momentum below the core-mantle bound-

ary, i.e. Coriolis and pressure gradient forces dominate the flow (LeMouël, 1984). This is
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the tangential geostrophy assumption, and leads to the following constraint:

�� � ��"��7��	 � � (3.12)

which can be rewritten as

�7���� � �"� � �"� � ��7�� � � (3.13)

The expression for the radial upwelling becomes, according to the tangential geostrophy

assumption

�� � �"� � ��� �

�
"� (3.14)

which can be expressed in terms of the two potentials � and � using (3.6) - (3.7) and (3.9)

as

��

�� �
 �5�

��
�
�

�45�

��

��
�

��

��
	 (3.15)

3.3.3 Helical flow

Here I introduce a third way to couple toroidal and poloidal motions, by assuming a

correlation between tangential divergence and radial vorticity at the top of the free stream

below the core-mantle boundary. I assume

�� � �"� � 
��6 (3.16)

where 6 is the radial vorticity and �� is a positive constant. Equation (3.16) can be rewritten

in terms of the potentials � and � using (3.8) - (3.9) as

��

�� � 
����

�� (3.17)

The negative signs in (3.16) - (3.17) apply to the northern hemisphere, and the positive

signs apply to the southern hemisphere. The sign difference in those two expressions is
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attributed to the Coriolis force which deflects motions to the right in the northern hemi-

sphere and to the left in the southern hemisphere. Therefore, upwelling is associated with

clockwise motion (negative vorticity) in the northern hemisphere and with anticlockwise

motion (positive vorticity) in the southern hemisphere.

The type of correlation in (3.16) - (3.17) can be viewed as the surface expression of a

three-dimensional flow which has the kinematic property of helicity, defined as

� � �6 � �" (3.18)

where � is the helicity, �6 is the vorticity vector and �" is the three-dimensional velocity.

According to (3.18), helicity appears in flows where there is a correlation between vorticity

and velocity vectors. Often (but not always) the toroidal (or rotational) component of the

motion is responsible for the radial vorticity and the poloidal (or convective) component of

the motion is responsible for the radial velocity. I call this type of motion the helical flow

assumption (3.16). I note that although the helicity vanishes on approach to the core-mantle

boundary, the existence of upwelling motion correlated with vorticity implies non-zero

helicity at greater depths. The helical flow assumption is illustrated in Fig. 3.1.

3.3.4 Columnar flow

A fourth way to couple toroidal and poloidal motions is to assume a columnar-type

flow. According to the Taylor-Proudman theorem, in a purely columnar flow the velocity

does not vary in the direction parallel to the rotation, i.e.

��� � �	�" � � (3.19)

where �" is again the full velocity vector and �� is the rotation vector. In a sphere, the

curved boundaries do not allow the flow to be entirely independent of the ��-direction. Still,

the columnar nature of motions remains a characteristic feature in convection in rapidly
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Rotation Convection Helicity

Figure 3.1: Schematic illustration of helical flow.
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rotating fluid spheres (Busse, 1975), where these types of flow structures are known as

“Busse columns”.

Columnar flow is defined in (3.19) as a horizontal translation of a column of fluid as a

whole; i.e. the velocity does not vary in the direction parallel to the rotation. In a sphere,

the curved boundaries do not allow for such a flow. An approximation to columnar flow

in a sphere is a fluid column which is stretched/shrunk as it moves along the cylindrical �-

direction. Assuming uniform stretching and no-flux boundary conditions, the relationship

between the velocity components in cylindrical coordinates "� and "� should be linear, so

that everywhere along the fluid column

"� � �81

.
"� (3.20)

where 8 � ��
�

�� � �� is the slope of the spherical shell, . �
�

�� � �� is half the

height of the column and � is the sphere’s radius. This assumption implies that the relative

position of a particle in the fluid column is conserved. The ratio "��"� on the boundary

equals the slope of the spherical shell to satisfy the boundary conditions, and "� � � at the

equator (symmetry). Equation (3.20), together with the incompressible continuity equation,

describe incompressible columnar flow in a sphere in cylindrical coordinates. My goal is

to express the radial upwelling term ��"����	 on the boundary in spherical coordinates.

Using conversions between spherical and cylindrical coordinate systems

"� � "��7�� � "��45� (3.21)

"� � "��7�� � "��45� (3.22)

and some algebraic manipulation, (3.20) becomes,

"���7�� � 9�45�	 � "���45� � 9�7��	 (3.23)

where

9 �
81

.
�

���45��7��

�� � ���45��
(3.24)
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Differentiation of (3.23) by � and evaluation at � � � yields the upwelling term in spherical

coordinates for a columnar flow in a sphere:

�"�
��

�� � �	 � �� �5�

�
"� (3.25)

Using the incompressible continuity equation, the tangential divergence due to a columnar

flow is

�� � �"� � � �5�

�
"� (3.26)

Note that this expression differs from the tangential geostrophy upwelling expression (3.14)

only by the factor 2. Equation (3.26) can be rewritten in terms of the two potentials � and

� using (3.6) - (3.7) and (3.9) as

��

�� �
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��
�
�

�45�

��

��
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��
	 (3.27)

3.3.5 Upwelling relationships in geophysical fluids

Because there is no way to directly determine the relationship between � and � at the

top of the Earth’s core, I look to other geophysical fluid systems for insight. Here I discuss

several examples of upwelling flows commonly found in rotating fluids.

Examples of tangential geostrophy

Examples of tangential geostrophy are found in both the ocean and the atmosphere.

In the subtropical ocean, the interior flow is governed by the Sverdrup relation (Sverdrup,

1947; Salmon, 1998)

�� � �"� � �:

%
"� (3.28)

where � is co-latitude. The Coriolis parameter % and its rate of change with co-latitude :

are defined as

% � ���7�� (3.29)
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(3.30)

where � is the local Cartesian northward coordinate, � is the Earth’s rotation rate and � is

the radius. Substitution of (3.29) - (3.30) into (3.28) yields

�� � �"� � ���45�

����7��
"� �

 �5�

�
"� (3.31)

Equation (3.31) is identical to (3.14), i.e. the Sverdrup relation is equivalent to the tangen-

tial geostrophy assumption. Similar correlation between tangential divergence and merid-

ional velocity was also reported by Sardeshmukh and Hoskins (1987, 1988) for solutions

to the vorticity equation in the tropical atmosphere.

Examples of helical flow

There are numerous examples of helical flow in rotating fluids. In the atmosphere

for example, a high/low pressure (in the northern hemisphere) is associated with a clock-

wise/anticlockwise circulation, according to the geostrophic balance. Deviation from this

balance due to friction at the ground yields downwelling/upwelling. Therefore, the di-

vergence of the tangential motion is correlated with the vorticity in the vertical direction.

Velocity/vorticity correlation appears in observations and in numerical simulations of at-

mospheric tropical cyclones. Lilly (1986) found that long-lived stable rotating storms in

the atmosphere are characterized by large values of helicity in both the storms and their

surrounding environment.

Helicity and the type of correlation in (3.16) are also found in rotating convection.

For example, at the onset of thermal convection in a plane layer of high Prandtl number

fluid heated from below with rotation in the presence of a uniform vertical magnetic field,

the instability sets in as stationary convection. For the case of convection between two

free horizontal boundaries, the depth-dependent vertical velocity, tangential divergence and
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vertical vorticity are given by (Chandrasekhar, 1961)

; � �;��45�
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	 (3.32)
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<
	 (3.34)

where 1 is the vertical Cartesian coordinate (anti-parallel to gravity), < is the depth of the

fluid layer, ;� is the vertical velocity at 1 � <��, � is the non-dimensional convection cell

width (� � �< where � is the wave number), � is the Ekman number (the ratio between

viscous to rotation forces) and = is the Chandrasekhar number (the ratio between magnetic

to viscous forces). The upper sign in (3.32) - (3.33) applies to a northern hemisphere

geometry (anticlockwise rotation of the fluid layer) and the lower sign applies to a southern

hemisphere geometry (clockwise rotation of the fluid layer). The helicity for this flow is

found by substituting (3.32) and (3.34) into (3.18),

� � �� �
<�

	
!�!� � ��	

�!� � ��	� �=!�
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��7��
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	�45�
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<
	 (3.35)

In this example the helicity depends on depth. At the boundaries �1 � �� <	 and at midway

�1 � <��	 the helicity vanishes. In the northern hemisphere the helicity is negative/positive

in the upper/lower half of the fluid layer, respectively. The ratio of the tangential divergence

to the vertical vorticity is, from (3.33) - (3.34),

�� � �"�
6

� 
�� � 
��
�!� � ��	� �=!�

�!� � ��	

 (3.36)

Note that the divergence/vorticity ratio in (3.36) is independent of depth. In the northern

hemisphere, at the lower/upper half of the fluid layer, convergence/divergence are associ-

ated with positive/negative vorticity, respectively.

Two special cases of (3.36) deserve special note in this context. First, in the case of

no magnetic field (= � �, i.e. purely rotating convection), � � � �
�
!�	�������� in the
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limit of small Ekman number (Chandrasekhar, 1961). According to the Prandtl turbulence

hypothesis all the effective diffusivities are equal, i.e., & � � � � ����, therefore � 
����, and (3.36) gives ��  ����. Second, in the more general case where both rotation and

magnetic field are present, �� is larger. For typical core values of �  ���� and =  ���,

Chandrasekhar (1961) shows that �  ����! at the onset of convection. Substituting these

values into (3.36) gives ��  ���, within the range of values that I use in this chapter.

Based on results from numerical dynamos, it has been proposed that helicity is present

in convection in the outer core. Olson et al. (1999) found in dynamo simulations colum-

nar convection with large amounts of helicity with opposite signs in the two hemispheres.

Results of convective dynamo simulations display a constant of proportionality (� ����)

between the tangential divergence and the vertical vorticity of the fluid flow at the outer

core just below the core-mantle boundary (Olson et al., 2002).

Another example of helical flow in rotating fluids is an Ekman boundary layer. The

horizontal velocity components in a laminar Ekman layer with a top rigid boundary are, in

a local Cartesian coordinate system (e.g. Kundu, 1990; Cushman-Roisin, 1994; Andrews,

2000)

" � � ��� ���Æ�7��1�Æ	
 (3.37)

� � 
����Æ�45�1�Æ	 (3.38)

where " and � are the 9 (eastward) and � (northward) velocity components respectively, �

is the �-dependent zonal velocity far from the boundary layer, and 1 is the vertical coordi-

nate directed out of the boundary, so that 1 � � at the boundary and 1 � � at the interior

in (3.37) - (3.38). The negative sign in (3.38) applies in the northern hemisphere and the

positive sign applies in the southern hemisphere. The thickness Æ of the Ekman boundary

layer is given by

Æ �

�
�&

�%�� (3.39)
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where & is the kinematic viscosity and %� � ���7��� is the % -plane approximation to the

Coriolis parameter, where � is the Earth’s rotation rate and �� is the local co-latitude. The

depth-dependent horizontal divergence and vertical vorticity derived from (3.37) - (3.38)

are

�� � �"� � �"

�9
�

��

��
� 
��

��
���Æ�45�1�Æ	 (3.40)

6 �
�"

��
� ��

�9
�

��

��
��� ���Æ�7��1�Æ	
 (3.41)

The depth-dependent vertical velocity associated with (3.40) is

; � �
� �

�

�� � �"��1�	<1� � 
Æ

�

��

��
����Æ��45�1�Æ	� �7��1�Æ		 � �
 (3.42)

Substituting (3.41) - (3.42) into (3.18) gives the depth-dependent helicity of the flow through

an Ekman boundary layer,

� � 6; � 
Æ

�
�
��

��
	���� ���Æ�7��1�Æ	
����Æ��45�1�Æ	� �7��1�Æ		 � �
 (3.43)

From (3.40) - (3.41), the ratio between horizontal divergence and vertical vorticity in this

case is
�� � �"�

6
� 
�� � 
 ���Æ�45�1�Æ	

�� ���Æ�7��1�Æ	
(3.44)

As in the previous example of rotating convection, the ratio between horizontal divergence

and vertical vorticity (3.44) is independent of the tangential coordinates. In a rotating, con-

vecting layer this ratio was also independent of depth, whereas in an Ekman boundary layer

this ratio varies with depth. Fig. 3.2 shows the normalized helicity and the depth-dependent

divergence/vorticity ratio for an Ekman boundary layer in the northern hemisphere geom-

etry, according to (3.43) - (3.44). � in (3.43) is negative/positive and the ratio in (3.44)

is positive/negative throughout the northern/southern hemisphere, respectively. �� goes

asymptotically to zero far from the boundary layer (practically vanishes at 1  Æ), and

���1 � Æ	 � ���. From Fig. 3.17 it is evident that � and �� are anti-correlated. The
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Non-dimensional depth

Figure 3.2: Divergence/vorticity ratio and normalized helicity as a function of depth in
an Ekman boundary layer in the southern hemisphere. Squares denote the ratio between
tangential divergence to radial vorticity �� in (3.44), and diamonds denote the normalized
helicity �����Æ��	������	�
 in (3.43).

helicity is large far from the boundary layer where velocity and vorticity correlate, and ��

vanishes far from the boundary layer due to the lack of horizontal divergence there. The

surface expression of such flow is large �� values due to the divergence/vorticity corre-

lation, and the helicity vanishes at the surface where the flow becomes two dimensional.

Thus, I use the term “helical” to describe a flow which has large helicity in the interior, and

its surface expression is the correlation between tangential divergence and radial vorticity.

To summarize, the ratio between tangential divergence and radial vorticity in helical

flow changes sign across the equator and is independent of the tangential coordinates in

both an Ekman boundary layer and rotating, convecting layer. However, the depth depen-

dence is different in the two situations. From these results, I infer that the parameter ��

may be tangentially uniform in the core, but its depth-variation in the outer core is uncer-

tain. Therefore I test different values of ��. For upwelling models such as strong helicity,

tangential geostrophy, and columnar flow, I use a small value of �� � ���. In my test case,

this value yields an advective limit solution. I use �� � ��� for the weak helicity case to
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examine the effect of different �� values on my solution.

3.3.6 General upwelling relationship

The helical flow and tangential geostrophy upwelling terms can be superimposed, due

to the linear relationship between geostrophic and boundary layer effects, similar to the su-

perposition of pressure-driven and stress-driven horizontal velocities in an Ekman boundary

layer. A general expression for the tangential divergence that incorporates the helical flow

(3.17), tangential geostrophy (3.15), columnar flow (3.27) and pure toroidal flow (3.11)

assumptions is

� � �"� � ��

�� � 
����

��� �
 �5�

��
�
�

�45�

��

��
�

��

��
	 (3.45)

where the negative sign in the first term on the right hand side applies in the northern

hemisphere and the positive sign in the same term applies in the southern hemisphere.

Different values of �� and � in (3.45) define all the physical assumptions discussed above:

�� � � � � for pure toroidal flow, �� � � and � � � for tangential geostrophy, �� �� � and

� � � for helical flow, �� � � and � � � for columnar flow. Together, (3.45) and (5.12)

constitute a set of two equations for the two unknowns, the potentials � and �.

Two limits of (3.45) are worth noting. For large values of �� (and away from the equa-

tor), the first term on the right hand side in (3.45) is dominant, yielding a proportionality

between surface divergence and radial vorticity. In this limit, poloidal velocity sources co-

incide with toroidal vortex centers. The other limit is for small values of �� (and at low

latitudes). In this limit, the second term on the right hand side in (3.45), is dominant. This

correlation produces centers of divergence where the meridional velocity is large.
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3.3.7 Non-uniqueness and “invisible” flow

Non-uniqueness in the inversion of the magnetic induction equation occurs in situations

where some component of the flow (often termed the “null space”) is “invisible”, i.e. does

not generate secular variation of its own (Backus and LeMouël, 1986). For pure toroidal

flow, motions parallel to contours of � are “invisible”. For tangential geostrophy, the

flow is “invisible” along contours of ���7�� which do not cross the equator (Chulliat and

Hulot, 2000). Therefore, both assumptions have “invisible” flows, but the non-uniqueness

in tangential geostrophy is confined to ambiguous patches and is more restricted than in

pure toroidal flow.

Here I derive an equation governing the “invisible” motion with the helical flow as-

sumption included. According to (5.10), the “invisible” flow consistent with the frozen

flux magnetic induction equation obeys

�� � ���"
�
�	 � � (3.46)

where �" �
� denotes the “invisible” flow. The tangentially non-divergent vector ��"

�
� can be

expressed in terms of a scalar potential  as follows (Backus, 1968; Backus and LeMouël,

1986):

��"
�
� � ��  �� (3.47)

According to (3.47), the tangential divergence of the “invisible” flow is given by

�� � �" �
� �

�

�
����45�

�
��

��

� 

��
� ��

��

� 

��
	 (3.48)

Equation (3.45) can be written using the “invisible” flow components:

�� � �" �
� � 
���� � � � �" � � �

 �5�

�
" �
� (3.49)

Substitution of the “invisible” velocity components defined in (3.47) into the right hand
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side of (3.49), equating with the right hand side of (3.48), and rearranging, yields

�
��
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��
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� �

��
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� �� �5� 
 ��

�

�45�

��

��
	
� 

��
� �����

��45���
� 

(3.50)

an equation for the scalar  with spatially-variable coefficients. For pure toroidal flow (i.e.

�� � � � �), the solution to (3.50) is  � �, and for tangential geostrophy (i.e. �� � �,

� � �), the solution is  � ���7��, as expected. For combined helical flow and tangential

geostrophy (i.e. �� �� �, � � �), (3.50) is an elliptic partial differential equation. According

to the maximum principle of E. Hopf, a non-constant solution of equations of this type

can attain neither a maximum nor a minimum at an interior point (Protter and Weinberger,

1967). All points are interior on a surface of a sphere, so that only the trivial solution,

 � �75� �5 , exists. Therefore, the “invisible” flow defined by (3.47) is identically zero,

i.e. the non-uniqueness associated with “invisible” flow is removed when helical flow is

included. This is a reason why solutions with the helical flow assumption may contain

more flow along �-contours than do previous solutions.

3.4 Numerical method

For numerical solution, I rewrite (5.12) and (3.45) as advection-diffusion equations for

� and � of the form
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		 (3.52)

where 3 is a relaxation variable and ���� is the source term. In (3.52), the coefficient

��� applies in the northern hemisphere, and ��� applies in the southern hemisphere. I use

� and ���� on the core-mantle boundary in (3.51) - (3.52), but like previous authors,
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I interpret � and � at the top of the free stream below the core-mantle boundary. I solve

(3.51) - (3.52) simultaneously for the two potentials � and � using an iterative technique,

starting from initial conditions� � � � �. The Laplacian operators act to diffuse the resid-

uals in (3.51) - (3.52) and allow the spatial variations of the time-like derivatives ����3

and ����3 to converge after a certain number of iterations. I use a second order, central

finite difference method on regular �Æ � �Æ and in one case ���Æ � ���Æ grids that avoid the

two poles and the equator. To verify that non-uniqueness is practically removed, I solved

(3.51) - (3.52) using different initial conditions and obtained the same final solutions.

It is well known that finite difference methods in spherical coordinates often have prob-

lems at the poles. I treat the polar points as follows. I calculate the derivatives of the

potentials � and � at the latitude points closest to the poles, using the value of � and �

at the polar point itself in the finite difference formulas. The values at the poles are then

re-calculated as the average of the values of the potentials over the closest latitude grid line.

With this method, streamlines are free to cross (or not to cross) the poles.

The equator requires special treatment for the last term in (3.52), which is singular

there. For � �� �, (5.12) and (3.45) at the equator reduce to

��

��
��� � ���

��
��� (3.53)

I add an hypothetical equatorial grid line to enforce (3.53). Cross-equator values are used

to calculate �����, and then (3.53) is integrated to obtain� on the equator. The equatorial

�-values found this way are then used to calculate ����� and ������� at latitudes nearest

to the equator. I further approximate the last term in (3.52) on the nearest latitudes to the

equator using (3.53), which becomes

��

�3
��� � ��

����� � �
����

��� �
 �5�

��
�
�

�45�
� �	

��

��
	��� (3.54)

My finite difference relaxation solution method has some limitations. The coefficient


���, which acts like a spatially-variable streamfunction diffusivity, has to exceed some
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minimum value that depends on the grid size in order to reach numerical convergence.

Furthermore, 
��� must maintain the same sign over the entire grid, otherwise locally

negative diffusivity will produce numerical instability in those regions. To overcome these

limitations, I use a smoothed version for � only for the last term on the right hand side of

(3.51), to guarantee numerical stability in the vicinity of null flux areas where � � � and

inside reversed flux patches where � changes sign.

3.4.1 Test case

In order to verify the reliability of my method, I examine solutions of a synthetic test

case. I choose the simple case of a dipole magnetic field with its pole located at latitude ��

and longitude �� � �, rotating along the longitude �� � � at constant angular velocity 
.

The instantaneous radial magnetic field for this case is given by

� � �7���� � 
 	�7�� � �45��� � 
 	�45��7�� (3.55)

and the secular variation induced by the rotation is

��

� 
� �
�45��� � 
 	�7�� � 
�7���� � 
 	�45��7�� (3.56)

The streamfunction found by substituting (3.55) - (3.56) into (3.51) - (3.52) using �� � ���,

� � �, 
 � � Æ/yr and �� � ��	 is shown in Fig. 3.3. This map conforms to the expected

pattern of uniform rotation perpendicular to the equatorial plane and parallel to the �� � �

longitude. The magnitude of the flow is also nearly correct; the average angular velocity has

an error of ���, compatible to the discretization error on the �Æ � �Æ grid. Various values

of 
 and �� were tested and produced similar results to those shown in Fig. 3.3 in terms of

accuracy of pattern and magnitude. This test case verifies the convergence of (3.51) for �

in its advective limit, i.e., small amounts of streamfunction diffusion (�� � ���) stabilize

the solution and only slightly modify the pure toroidal character of the flow. To verify the
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Figure 3.3: Streamfunction for the test case of a dipole magnetic field with instantaneous
pole at ���� ��
 � ��� ��	 
 and rotating perpendicular to the equatorial plane and parallel to
the �� � � longitude line at a constant angular velocity 
 � � Æ/yr, with �� � ���.
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Figure 3.4: Rms absolute velocity as a function of iteration number for the tangential
geostrophy case 1. The asymptotic curve verifies numerical convergence.

convergence of (3.52), I check that � satisfies the tangential divergence expression (3.45).

I have also verified this convergence in each of my real data cases.

Fig. 3.4 demonstrates the convergence of the solution for my main flow case (which

will be defined and discussed below). I plot the rms absolute velocity over the entire grid

as a function of iteration number, which shows the convergence to an asymptotic value.

3.5 Core flow cases

Fig. 1.3 shows the radial geomagnetic field and secular variation models on the core-

mantle boundary from the 2000 �ersted and 1980 Magsat satellites, truncated at spherical

harmonic degree 14. The magnetic field model for 1990 in Fig. 1.3 is the average of the
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�ersted and the Magsat field models, and the secular variation at 1990 is their difference

divided by 20 years. These field models were used in (3.51) - (3.52) to obtain flow maps that

correspond to the cases described above: Tangential geostrophy, strong and weak helicity,

and columnar flow.

case characterization �� c � max values rms values
"��� "��� "��� "��� "��� "���

1 Tangential geostrophy 0.1 1 5 84.6 33.5 79.9 19.0 3.9 19.4
2 Sensitivity test 0.1 1 5 41.5 10.2 49.6 11.8 2.9 12.1
3 Resolution test 0.1 1 2.5 134.0 33.9 141.4 26.3 6.0 26.9
4 Strong helicity 0.1 0 5 83.0 36.3 84.2 21.0 2.2 21.1
5 Weak helicity 0.5 0 5 22.8 11.7 25.6 6.2 3.1 6.9
6 Columnar flow 0.1 2 5 130.3 46.8 173.4 21.7 8.5 22.2

Table 3.1: Maximum and mean velocities for different cases. �� and � values refer to
equation (3.45), � is grid size in degrees. All values are in km/yr.

Table 3.1 defines the different flow cases and summarizes the core-mantle boundary

surface rms and maximum values for the various solutions. The values of �� and � define

the various upwelling models used in each case, according to (3.45). The characterization

in Table 3.1 identifies the most important among the different terms in the upwelling ex-

pression for each case. In case 1, a small value of �� and � � � indicates that tangential

geostrophy is dominant. In case 2, the sensitivity of the method is investigated by using a

filtered model for the secular variation with the same upwelling model as in case 1. In case

3, I examine the effects of grid resolution using the same upwelling model as in case 1 but

on a finer grid. In case 4, a small value of �� and � � � simulates flow with strong helicity.

In case 5, a relatively large �� value is used in order to provide the effect of weak helicity.

In case 6, a small value of �� and � � � means that columnar flow is the dominant source

of upwelling. Surface rms values are the surface average of the absolute pointwise values,

and maximum values are the maximum absolute values. The quantities "���, "��� and "���

denote the toroidal, poloidal and absolute velocities, respectively.
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case data misfit (%) divergence misfit (%)
1 0.00 0.14
2 0.00 1.29
3 1.08 1.21
4 0.38 0.63
5 1.53 0.81
6 0.04 0.34

Table 3.2: Misfit values for different cases.

The quality of convergence is defined by two misfits. The first is the data misfit, defined

as the ratio of the rms data residual � ����3 � to the rms secular variation � ���� �

over the entire grid. The second is the divergence misfit, the ratio of the rms tangential

divergence residual � ����3 � to the rms tangential divergence � ��
�� � over the entire

grid. Table 3.2 summarizes the quality of the different solutions in terms of their misfits.

I begin by describing my tangential geostrophy solution (case 1) and I compare it to

tangential geostrophy solutions previously obtained by others. I then use a sensitivity test

to demonstrate the robustness of my solution method with respect to small-scale variations

in the data (case 2). I then show a resolution test in which I re-solve case 1 on a finer grid.

I compare the flows from cases 1, 4, 5 and 6 to investigate the effect of different upwelling

models. Finally, I focus on some areas in case 1 that illustrate different kinematic scenarios

which lead to the observed secular variation at the core-mantle boundary.

3.5.1 Tangential geostrophy case

Fig. 3.5a shows the flow map for the tangential geostrophy case. I name this case

“tangential geostrophy” due to the dominance of the tangential geostrophy assumption in

(3.16), even though the upwelling model in this case also includes the helical flow term.

The dominant features in the solution are a large anticlockwise circulation in the southern
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Figure 3.5: Flow map (a) and zonal velocity profile (b) beneath the core-mantle boundary
for the tangential geostrophy case 1 from table 3.1. Contours in (a) are streamlines of the
flow, grey scale represents absolute upwelling value, with + and - signs indicate upwelling
and downwelling, respectively. In (b) the traditional ��� Æ/yr westward drift value is marked
by a solid line and the zonal flow of Hulot et al. (2002) is shown by a dashed line for
comparison.
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hemisphere centered beneath southern Africa and Antarctica, a strong clockwise vortex

centered below Bermuda, and a westward drift sweeping most of the Atlantic southern

hemisphere. The Atlantic hemisphere has overall higher velocities than the Pacific, and the

secular variation is also higher there (see Fig. 1.3b). Note that the flow has a much larger

length scale than does the secular variation. The solution contains a significant amount

of flow along �-contours. The average ratio of the velocity component parallel to �-

contours to the velocity component perpendicular to the same contours is about ��� (see

Table 3.3).

case � ��� � � � ��� � ���� ����	 sym/skew
1 1.18 1.07 1.02
2 1.23 0.48 1.94
3 1.27 0.48 1.86
4 1.19 1.06 1.01
5 1.17 1.20 0.22
6 1.20 0.73 0.83

Table 3.3: Velocity ratios for different cases. �� denotes the rms value over the entire
grid. ��� and ��� denote the parallel and perpendicular velocity components, respectively,
with respect to the local direction of a � contour. ���� and ���	 denote the meridional and
azimuthal flow components, respectively, averaged along the two closest latitudes to the
equator. Sym/skew denotes the ratio of equatorially symmetric to antisymmetric zonal
flow.

The solution in Fig. 3.5a shows some cross-equator flow. This flow is present in this

solution for two reasons. First, the tangential divergence includes the helical flow assump-

tion as well as tangential geostrophy. Second, my grid skips the equator itself. The mean

equatorial meridional/azimuthal ratio is given in Table 3.3.

The solution contains intense vortices and jets. A clockwise vortex below Siberia co-

incides with an intense secular variation structure there (compare Figs. 1.3b and 3.5a). A

localized jet begins beneath the Indian ocean, continues north-west beneath southern Africa

and can be traced westward into the South Atlantic. This structure overlaps an intense sec-
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ular variation bipolar structure aligned with the flow (again see Figs. 1.3b and 3.5a). The

strongest upwellings occur near the equator, a consequence of the latitudinal dependence in

the tangential geostrophy term in (3.45). Away from the equator, the upwellings are weaker

and located at vortex centers, a consequence of the helical flow term in (3.45).

The zonal velocity profile for the tangential geostrophy case shown in Fig. 3.5b displays

equal amounts of symmetry and antisymmetry with respect to the equator (see Table 3.3).

Equatorial symmetry in the zonal velocity is consistent with a geostrophic force balance

and may indicate the existence of axisymmetric columnar flow (Jault et al., 1988; Jackson

et al., 1993). The zonal angular velocity in mid-latitudes of the southern hemisphere is in

agreement with the traditional ��� Æ/yr westward drift value, but the zonal angular velocity

at other latitudes is smaller and, in places, eastward. Fig. 3.5b includes the zonal velocity

profile obtained by Hulot et al. (2002) for the same data sets. Note that my solution is less

symmetric than theirs with respect to the equator. My zonal velocity profile suggests rela-

tively strong westward polar vortices. However, due to the small surface area of the polar

cap with respect to the data resolution, these structures are very uncertain. The existence

of polar vortices was argued on the basis of numerical models (Olson and Aurnou, 1999),

flow inversions (Hulot et al., 2002) and lab experiments (Aurnou et al., 2003). I find that

westward polar vortices are suggested, though not well resolved in my solution. A local

solution for the polar regions may shed more light on this question.

3.5.2 Sensitivity test

The geomagnetic field and the secular variation models I use are based on the �ersted

and Magsat data up to spherical harmonic degree 14. In order to check the robustness of

my solution with respect to small changes in the geomagnetic field model, I perform the

following sensitivity test. I smooth each geomagnetic field model with a quarter cosine

filter from ���� � � to ���� � �, meaning that the � � � spherical harmonic is not filtered

47



mT

mT/century

a

b

0

1

0

0.85

Figure 3.6: Sensitivity test. Radial magnetic field (a), secular variation (b) on the core-
mantle boundary, flow map (c) and zonal velocity profile (d) beneath the core-mantle
boundary for low-pass filter (quarter cosine from ���� � � to ���� � �) case 2 from table
3.1. In (a) and (b) grey scale represents absolute values, solid lines are positive, dotted lines
are negative. Note that the scale in (b) is magnified to depict the reduced secular variation
with respect to the unfiltered secular variation in Fig. 1.3b. Contours in (c) are stream-
lines, grey scale represents absolute upwelling value, + and - signs indicate upwelling and
downwelling, respectively. The contour interval in (c) is the same as in Fig. 3.5a.
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at all, the harmonics � � � and � � �� are completely removed, and the intermediate ones

are progressively filtered (see Figs. 3.6a and 3.6b). This type of filtering is intended to

mitigate the increasing uncertainty in the secular variation power spectrum at high spherical

harmonic degrees (Hulot et al., 2002). The streamfunction and zonal velocity profile of the

sensitivity test using the same upwelling as in case 1 are shown in Figs. 3.6c and 3.6d.

The solution is a smoother version of the non-truncated solution (compare Figs. 3.5a and

3.6c), with the main features present in both cases. I conclude on the basis of this test

that my solution technique is robust for large flow structures, and these large structures are

relatively insensitive to short wavelength errors in the secular variation model. However,

using smoothed data substantially reduces smaller structures such as the polar vortices and

therefore those should not be considered as very robust. The sensitivity test case contains a

more equatorially-aligned flow and a more symmetric zonal flow with respect to the equator

than the tangential geostrophy case 1 (see Table 3.3 for comparison).

3.5.3 Resolution test

I have examined the effects of grid size on my flow solutions using calculations made

on a refined ���Æ����Æ grid, again avoiding the equator and poles. The streamfunction and

zonal velocity profile of this resolution test using the same upwelling as in case 1 are shown

in Figs. 3.7a and 3.7b. Note that the contour interval is different than the one in Fig. 3.5a

(see details in caption of Fig. 3.7). The solution is much more energetic (see larger velocity

values in Table 3.1) and contains much more small scale flow than the solution on the

coarser grid (compare Figs. 3.5a and 3.7a), but the large scale circulation is similar in both

cases. Two significant differences between cases 1 and 3 are worth noting. First, the flow

in the resolution test case is much more aligned with equator (compare Figs. 3.5a and 3.7a,

and also see Table 3.3). Second, the resolution test case displays more symmetry in the

zonal flow with respect to the equator than the tangential geostrophy case (compare Figs.
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3.5b and 3.7b, and also see Table 3.3); the symmetric part of the flow in the resolution test

case is about � times larger than the anti-symmetric part. Equatorial symmetry in the zonal

flow is critical in the interpretation of length of day variations in terms of time dependent

core flows (Jault et al., 1988; Jackson et al., 1993), and is also found in numerical dynamo

simulations (Christensen et al., 1999). Fig. 3.7b includes the zonal velocity profile obtained

by Hulot et al. (2002) for the same data sets.

3.5.4 Comparison between different physical assumptions

Fig. 3.8 shows the solutions for the strong helicity (case 4), weak helicity (case 5) and

columnar flow (case 6) cases. Note that the contour intervals vary from one figure to another

(see details in caption of Fig. 3.8). Most of the major features are found in the solutions

for the different physical assumptions, but there are some case-to-case differences.

The toroidal flow patterns in the tangential geostrophy (case 1, Fig. 3.5a) and the strong

helicity (case 4, Fig. 3.8a) are very similar. The main difference between the two cases is

in the upwelling pattern. The global upwelling pattern in the strong helicity case is evenly

distributed over the core-mantle boundary, whereas in the tangential geostrophy case the

largest upwellings appear in the equatorial region, a consequence of the singularity of the

tangential geostrophy term at the equator. To illustrate this difference, consider the positive

� structure below central Africa (see Fig. 1.3a). This structure is stretched to the west,

and as a result, a positive secular variation structure appears to its west (below the west

coast of central Africa, see Fig. 1.3b), but no significant secular variation structure appears

to its east, as would be expected from plain advection. My solutions recover this secular

variation monopole by stretching, caused by downwelling centered below the west coast of

central Africa. This downwelling is produced by a weak southward flow in the tangential

geostrophy case (see Fig. 3.5a), or by a strong clockwise vortex in the strong helicity case

(see Fig. 3.8a). In both cases the motion is connected to the global circulation by eastward
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jet along �-contours. This eastward flow produces some stretching of the magnetic field

without effects of advection.

The flow pattern of the weak helicity (case 5, Fig. 3.8c) has elements in common

with the strong helicity case, although the velocity field of the weak helicity case is more

strongly damped and has smaller velocities overall (see Table 3.1 for maximum and rms

values).

The columnar flow solution (case 6, Fig. 3.8e) is also similar to the tangential geostro-

phy solution (case 1), with the main difference being that the columnar flow solution is

more aligned with the equator. As a result, the zonal velocity in the columnar flow case

has larger equatorial amplitudes (eastward at southern hemisphere, westward at northern

hemisphere) than the tangential geostrophy case (compare Figs. 3.8f and 3.5b).

The ratio of poloidal to toroidal velocities scales with the coefficient �� in the strong and

weak helicity cases, and with the coefficient � in the tangential geostrophy and columnar

flow cases. In the strong helicity case, the secular variation can be explained by toroidal

advection and stretching, whereas in other cases there is also a contribution to the secular

variation from poloidal advection.

The ratio of average flow component along �-contours to the average flow component

perpendicular to the same contours is about ��� for all cases (Table 3.3), indicating a sig-

nificant amount of such flow. Cross equatorial flow occurs least in the columnar flow case

and most in the weak helicity case (again, Table 3.3).

Figs. 3.5a, 3.8a, 3.8c and 3.8e show little evidence of non-axisymmetric Taylor columns,

i.e. vortices of opposite sign symmetric about the equator. These may be obscured by the

axisymmetric flow, or, the scale of such non-axisymmetric Taylor columns of fluid might

be very small and “unseen” in the resolution of the data. Another possibility is that the Tay-

lor columns are axisymmetric and can only be seen in the zonal angular velocity profiles

(Figs. 3.5b, 3.8b, 3.8d and 3.8f), which do display some equatorial symmetry. The ratio of

56



the symmetric zonal flow with respect to the equator to the antisymmetric one is given in

Table 3.3. Note that the tangential geostrophy and strong helicity cases both contain about

equal amounts of zonal symmetric and antisymmetric flow components with respect to the

equator, whereas the zonal flow of the weak helicity case is very antisymmetric.

3.5.5 Comparison with previous results

Here I compare the results of my tangential geostrophy case with the results obtained

by Hulot et al. (2002) using the same �ersted and Magsat geomagnetic data. I further

discuss some general conceptual differences between my solutions and previous ones, in

terms of the differences between my method and previous spectral methods.

My global circulation has some features in common with that obtained by Hulot et al.

(2002): The Atlantic hemisphere is more active than the Pacific one, some symmetry in the

zonal velocity profile with respect to the equator and similar westward drift in mid-latitudes

of the southern hemisphere. However, my solution differs from the solution obtained by

Hulot et al. (2002) in several features. My average westward drift is somewhat less than

theirs and my zonal flow is actually eastward in places where theirs is westward. Also my

solution contains significantly more flow along �-contours than Hulot et al. (2002).

Most previous solutions restricted the scale of their flow solution by setting some a-

priori constraint on the energy spectrum. My method does not rely on a-priori constraints;

instead a solution is provided by diffusion of the streamfunction through the helical flow

term. Previous spectral methods minimized “invisible flow”, whereas ours allows for such

flow where it is required by the helical flow assumption. In my method, the amount of flow

along �-contours is specified by the amount of helicity assumed, through the value of the

parameter ��. Previous studies found maximal upwelling values of� �� � century�� (e.g.

Gire et al., 1986; Gire and LeMouël, 1990; Bloxham and Jackson, 1991). I obtain similar

upwelling magnitudes in the strong and weak helicity cases, as well as in the sensitivity
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test case (see scales at Figs. 3.6c, 3.8a and 3.8c). However, the singularity in the tangential

geostrophy term at the equator yields local stronger upwellings in the equatorial region for

the tangential geostrophy case (see scale at Fig. 3.5a).

3.5.6 Specific areas of interest

Here I examine some specific areas of interest from the tangential geostrophy case,

which show how the kinematics in my flow solution creates particular structures in the

secular variation.

Fig. 3.9a shows the radial magnetic field on the core-mantle boundary at 1980 and 2000

and the full velocity vectors in the region below Madagascar, obtained from the tangential

geostrophy case 1. Note the general consistency between the translation of the � � �

curve and the velocity vectors. The secular variation in this area can be accounted for by

simple advection of � by toroidal velocity. The center of negative magnetic field structure

shifts from (�Æ�� �Æ>) at 1980 to (�Æ�� ��Æ>) at 2000, approximately a �Æ translation

to the north west in 20 yr. The velocity field at this region includes a jet to the north west

with maximum velocity of ���� km/yr, which corresponds to translation of about ��Æ in ��

yr.

Fig. 3.9b shows the radial magnetic field on the core-mantle boundary from the same

epoch as Fig. 3.9a, along with the poloidal velocity vectors in the region below Ethiopia,

again from case 1. In this region the contours of � show a broad ridge structure in 1980

centered at �Æ�. By 2000, this ridge structure has been translated to ��Æ�, and also

has been sharpened. The secular variation in this area can be accounted for by stretching

of magnetic field due to an upwelling. The poloidal velocity indicates the direction in

which the stretching operates. Two centers of meridional velocity, which are sources of

upwelling and surface divergence due to the tangential geostrophic effect, appear in the

solution at ��Æ�� ��Æ		 and ��Æ�� �Æ		. Those sources are located on both sides of the
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ridge structure and produce the poloidal velocities and the stretching responsible for the

contraction of � contours at this region.

3.6 Summary

I have used geomagnetic secular variation data to image the fluid flow below the core-

mantle boundary by combining a previously-used assumption for the upwelling, tangential

geostrophy, with a new helical flow assumption. The latter introduces streamfunction dif-

fusion in the magnetic induction equation, and allows us to compute the fluid velocity at

the top of the core using finite difference methods on a regular grid. My method does not

require any a-priori assumption about the energy or lengthscale of the flow. My method si-

multaneously minimizes the secular variation data residual and guarantees that the resulted

flow satisfies the physical assumption everywhere on the grid. I have used the 2000�ersted

and 1980 Magsat core geomagnetic fields. For this 20 years interval, my main findings are:

� The main flow structures common to all my upwelling models include a large anti-

clockwise circulation in the southern hemisphere, a clockwise vortex below Bermuda,

and a westward flow over most of the southern hemisphere.

� My solutions contain a significant amount of flow along �-contours. The ratio of

the average velocity component parallel to �-contours to the average velocity com-

ponent perpendicular to the same contours is about ���.

� The zonal average westward drift rate in mid-latitudes of the southern hemisphere

is in agreement with the traditional ��� Æ/yr value, but the drift is smaller and even

eastward at other latitudes.

� The signature of the inner core tangent cylinder is apparent in the zonal velocity

profile. Polar vortices are suggested, though not well resolved in my models.
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� The large scale flow in the high resolution test is qualitatively similar to the large

scale flow seen with coarser resolution, but also shows some substantial differences.

For example, in the higher resolution case the ratio of equatorial symmetric to anti-

symmetric zonal flow is about �, whereas this ratio is about �with coarser resolution.

This difference indicates a need for core flow models with higher spatial resolution.

� In all cases I investigated, the Atlantic hemisphere displays higher flow velocities

than the Pacific.

Some of the main features of my results are similar to previous core flows obtained with

the same data by Hulot et al. (2002). The results of my tangential geostrophy case contain

strong mid-latitude vortices, westward drift sweeping most of the southern hemisphere,

flow in the Atlantic hemisphere is more intense than in the Pacific and suggested (though

not reliable) strong polar westward vortices. The flows I calculate are characterized by

relatively large length scales, despite the dominance of high wavenumber structure in the

secular variation. However, my solution differs from previous ones in some important

aspects. My solutions contain a significant component of flow along �-contours; this

component of flow is constrained by the helical flow assumption. Hulot et al. (2002)

obtained westward drift in both hemispheres, whereas my solution contains smaller and in

some latitudes eastward drift.

Due to the helical flow assumption, the structure of the poloidal flow in my solutions

is different from than in previous studies. Near the equator, the tangential geostrophy

assumption is dominant, and poloidal flow sources are located in regions of meridional

flow. However, far from the equator, the helical flow dominates, and poloidal flow sources

coincide with centers of vortices.
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Chapter 4

Time-average and time-dependent parts

of core flow

4.1 Introduction

The Earth’s magnetic field is generated by fluid flow in the Earth’s metallic liquid outer

core. This process, the geodynamo, has been studied using various approaches, including

inversions of the geomagnetic secular variation, self-consistent numerical dynamos, lab

experiments, paleomagnetic observations, and core thermal history. In this chapter I use

the historical geomagnetic secular variation to image the core flow over a century of time.

I separate the time-average and time-dependent parts of the core flow derived this way. I

compare the time-average flow with models of core flow driven by lateral density gradients

originating in the core and in the mantle. Then I compare the time-dependent part of

the flow with observed length-of-day variations, and fit these fluctuations to a model of

torsional oscillations in the outer core.

The outline of the chapter is as follows. In section 2 I describe my method of finding

core flow just below the core-mantle boundary from geomagnetic secular variation data. In
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section 3 I present the results of my inversions using historical secular variation data. In

section 4 I apply a thermal wind interpretation to the time-average core flow using man-

tle tomography and numerical dynamos. In section 5 I use observations of length-of-day

variations to test the time-dependent part of my solutions, and I fit a torsional oscillations

model to this time-dependency. My main findings are summarized in section 6.

4.2 Core flow inversion

The geomagnetic secular variation has been used to map fluid motion in the outer core,

providing images of the geodynamo just below its outer surface. Early analysis of the

secular variation inferred that the main core flow is uniform ��� Æ/yr westward zonal drift

(Bullard et al., 1950). More recent analysis of secular variation using the magnetic induc-

tion equation in the perfect conducting, frozen-flux limit (Roberts and Scott, 1965) have

shown that this simple model is inadequate. It is now known that the zonal core flow varies

with latitude and is time-dependent. In addition, core flow includes significant north-south

toroidal and poloidal components (Gire et al., 1986; Voorhies, 1986; Jault et al., 1988;

Bloxham, 1989; Gire and LeMouël, 1990; Bloxham and Jackson, 1991; Jackson and Blox-

ham, 1991; Jackson et al., 1993; Jackson, 1997; Pais and Hulot, 2000; Hulot et al., 2002;

Amit and Olson, 2004).

Separate interpretations have been applied to the time-average and the time-dependent

parts of the flow. The time-average part of the core flow has been proposed to be a result

of mantle heterogeneity (thermal, compositional or topographic) affecting core dynamics

(Glatzmaier et al., 1999; Olson and Christensen, 2002; Christensen and Olson, 2003). The

time-dependent part has been linked to angular momentum exchange between the core and

the mantle and length-of-day variations (Jault et al., 1988; Jackson et al., 1993). The time-

dependent core flow has been modeled as torsional oscillations in the outer core (Zatman
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and Bloxham, 1997; Bloxham et al., 2002).

I wish to stress the conceptual difference between time-average core flow as derived

in this chapter and previous steady core flow models. I invert for the core flow at each

separate epoch, and then calculate the time-average of the resulting flows. This procedure

differs from often-used inversion methods which incorporate steady flow (Gubbins, 1982;

Voorhies, 1986; Bloxham, 1992) or a steady flow in an azimuthally drifting reference frame

(Voorhies and Backus, 1985; Holme and Whaler, 2001) as a-priori constraints.

4.2.1 Inversion method

Fluid motion just below the core-mantle boundary can be inferred from geomagnetic

secular variation by assuming the magnetic field acts like a tracer in the fluid. Like previ-

ous studies of core flow, I assume frozen magnetic flux, in which the diffusion of magnetic

field is neglected in comparison with the advection of magnetic field by the flow (Roberts

and Scott, 1965). The frozen flux hypothesis is assumed valid because the magnetic dif-

fusion time-scale, 3� � .��� � �� ��� yr, is much longer than the advection time-scale,

3� � .�� � �� yr, where L, U and � are the typical length-scale, velocity and magnetic

diffusivity for the Earth’s core (Amit and Olson, 2004).

The radial component of the frozen flux magnetic induction equation just below the

core-mantle boundary is

��

� 
� �"� � �� ���� � �"� � � (4.1)

where � is the radial component of the magnetic field,  is time and �"� is the fluid velocity

tangent to the spherical core-mantle boundary. Maps of � and its time derivative ���� 

at the core-mantle boundary, together with some assumption for the tangential divergence

of the flow, allow for inversion of the tangential fluid velocity �"� using (4.1).

The tangential velocity can be decomposed into a toroidal (non-divergent) component
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expressed in terms of a streamfunction � and a poloidal (divergent) component expressed

in terms of a scalar potential � as follows:

�"� � �"��� � �"��� � ����� ���� (4.2)

where �� is a unit radial vector and�� � ������ and ��, �, �	 are the radial, co-latitudinal

and longitudinal spherical coordinates. Substitution of (4.2) into (4.1) gives
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where ��
� � �� � �

��
�
��
��� �

��
	 and � is the core radius.

Amit and Olson (2004) proposed an expression for the tangential divergence of velocity

that incorporates the previously-used tangential geostrophy assumption (LeMouël, 1984;

Gire and LeMouël, 1990; Jackson, 1997; Hulot et al., 2002) and a helical flow assumption,

�� � �"� � 
�6 �
��� �

�
"� (4.4)

The first term on the right hand side of (5.13) is helical flow. It assumes that the tangential

divergence is correlated with the radial vorticity 6 , the minus sign for the northern hemi-

sphere and the plus sign for the southern hemisphere. The second term on the right hand

side of (5.13) is tangential geostrophy. Substitution of (4.2) into (5.13) yields
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The non-dimensional parameter � is unknown in the core. Simple analytical models of

rotational flows and results from numerical dynamos suggest that ��� � � � ���� (Amit

and Olson, 2004). Here I use � � ���, as in the main case of Amit and Olson (2004).

I solve (4.3) and (5.14) simultaneously in an iterative way to obtain the potentials �

and � over the core-mantle boundary. I use a second order, central finite difference method

on a regular ���Æ � ���Æ spherical grid with radius �. Equation (5.14) is singular at the

equator, and special treatment is required there. First, I calculate the �-derivatives of � at
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the equator by assuming that the equator is a streamline, and the �-derivatives of � at the

equator by assuming that the equator is a mirror for �. Second, I replace the ��� � term in

(5.14) by�� ������� � !��		 � !"#���� � !��	�	, which is finite at the equator. These ap-

proximations minimize flow across the equator and result in a globally balanced upwelling

distribution, as opposed to concentrated upwelling features at the equatorial region found

in many previous core flow solutions. This treatment corresponds to a non-geostrophic

belt near the equator which is plausible because the Coriolis force vanishes there. Previous

studies have postulated the existence of such a belt and discussed its possible width and

geometry (Backus and LeMouël, 1986; Chulliat and Hulot, 2000; Pais et al., 2004).

4.2.2 Limitations of core flow inversions

Core flow inversions from geomagnetic secular variation data suffer from several lim-

itations, leading to uncertainties in inferred core flows. First, the secular variation data

is truncated at spherical harmonic degree �� � �� to remove the effect of crustal magne-

tization. This truncation might remove a significant core signal, and its influence on the

inverted flows is unknown. Second, most studies assume frozen flux, so the unmodeled

effects of magnetic diffusion are sources of errors in inverted flows. Third, the physi-

cal assumption for the tangential divergence of the core flow is rather ad-hoc. A variety

of physical assumptions have been used in the past, such as pure toroidal flow (Whaler,

1980), steady flow (Voorhies, 1986) and tangential geostrophy (LeMouël, 1984). Those

assumptions reduce but do not remove non-uniqueness from the inverse problem. This

non-uniqueness is of great concern; there is some “invisible” component to the flow which

does not generate secular variation of its own (Backus, 1968; Backus and LeMouël, 1986).

In tangential geostrophy the non-uniqueness is confined to ambiguous patches and is there-

fore more restricted than in pure toroidal flow (Chulliat and Hulot, 2000), but still the

problem remains. Core flow models which assumed steady flow are advantageous for their
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simplicity and were found compatible with the gross secular variation, but could not resolve

adequately the fine scale or abrupt secular variation (Bloxham, 1992; Holme and Whaler,

2001). Finally, different numerical techniques and regularization conditions may affect the

resulted core flows as well. Cautious interpretation of the results is necessary in view of

these uncertainties. Even so, the remaining uncertainties raise the question whether the

inverted core flows give an accurate picture of the actual core flow, in terms of pattern and

magnitude. The present study is subject to all of the above limitations, except one. In my

method non-uniqueness is removed from the inverse problem by adding helical flow (Amit

and Olson, 2004).

4.3 Core flows between 1895-1985

I solve (4.3) and (5.14) for the core flow using the time-dependent model of Blox-

ham and Jackson (1992) for the radial component of the magnetic field on the core-mantle

boundary ���� ��  	 truncated at spherical harmonic degree 14. This field model was con-

structed by fitting the magnetic observatory annual means and Magsat satellite data using

spherical harmonics for spatial representation and cubic B-splines for the temporal repre-

sentation. I concentrate on the time interval 1890-1990. I compute the secular variation

as the central time difference between two epochs �� years apart. Accordingly, my core

flows correspond to 5-years intervals between 1895-1985. Fig. 4.1 shows examples of the

geomagnetic data used in this study.

Fig. 4.2 shows core flows for epochs 1900, 1925, 1950, and 1975. Three flow structures

are common to all of these snapshots. First, a large anti-cyclonic vortex at mid and high

latitudes of the southern hemisphere is centered beneath the southern Atlantic Ocean. This

structure drifts slowly westward with time. In 1900 it was centered near ����� ��>
 (Fig.

4.2a) whereas in 1975 its center moved to near ����� ��>
 (Fig. 4.2d). In 1925, 1950,
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Figure 4.1: Radial magnetic field and secular variation on the core-mantle boundary at
1900, 1925, 1950 and 1975 from core field model of Bloxham and Jackson (1992). Grey
scale represents absolute values, solid lines are positive, dotted lines are negative. The
secular variation is the central difference between magnetic field snapshots 10 years apart.
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and 1975 this structure covers most of the southern hemisphere, extending between ���?

and ��� and from near ��> to the South Pole. Second, an intense jet is located beneath

the Atlantic southern hemisphere, and forms the northern limb of the vortex. During most

epochs its peak intensity is found beneath Southern Africa and beneath mid-latitudes of the

Indian and Atlantic Oceans (Fig. 4.2). Third, an anti-cyclonic vortex is centered beneath

the east coast of North America (Fig. 4.2). Its position, shape and intensity vary with time.

A cyclonic vortex beneath Euro-Asia is also evident in Figs. 4.2a, 4.2b, and 4.2c, but it

appears even more time-dependent than the vortex beneath North America.

Table 4.1 summarizes the magnitudes of the core flows in the snapshot images. Rms

core velocities range between ���� � ���� km/yr, with peak velocities ranging between

���� � ���� km/yr. For typical length-scale of . � ���� km and magnetic diffusivity

of � � � m�/s, these rms velocities correspond to a magnetic Reynolds number range of

�� � ������. Toroidal motions dominate over poloidal motions. For example, the ratio

of rms zonal azimuthal transport (due to toroidal motions only) to rms zonal meridional

transport (due to poloidal motions only) varies between ��� and ��� over the study period.

Some of the core flow structures in Fig. 4.2 have been seen in previous studies. The

westward jet below southern Africa is present in several previous core flow maps (Blox-

ham, 1989; Gire and LeMouël, 1990). The large southern hemisphere vortex was found

by Jackson et al. (1993). Some important differences between my core flows and previous

studies are worth noting. First, my core flows contain a significant amount of field-aligned

motion, i.e. motion parallel to �-contours. This flow component does not generate secu-

lar variation by toroidal advection, but it is coupled to upwelling and downwelling which

disperse and concentrate the magnetic field respectively. The rms ratio between the field-

aligned component of the flow to the component of the flow perpendicular to � contours is

� ���. Field-aligned flow was previously suggested from numerical dynamos and magnetic
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Figure 4.2: Core flow below the core-mantle boundary for the years 1900 (a), 1925 (b),
1950 (c) and 1975 (d). Contours are streamlines of the toroidal flow; grey scale repre-
sents absolute upwelling value with + and - signs indicating upwelling and downwelling,
respectively.
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Figure 4.2: Continued
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field observations. Olson et al. (1999) found that vortices coincide with intense magnetic

flux bundles in 3D self-consistent numerical dynamos, i.e. the flow there is field-aligned.

Jackson (2003) noticed the existence of matching pairs of intense magnetic flux with oppo-

site signs on different sides of the equator in magnetic field models obtained from Magsat

(1980) and�ersted (2000) satellites. He postulated that those pairs are evidence for colum-

nar flow. According to this interpretation, that flow at the regions of those flux bundles is

parallel to �-contours. Second, the relationship between toroidal and poloidal motions

is different in my solutions compared to previous solutions. In places where tangential

geostrophy dominates, upwelling coincides with equatorward motion and downwelling co-

incides with poleward motion. However, in places where helical flow dominates, upwelling

coincides with anticyclonic motion and downwelling coincides with cyclonic motion.

4.4 Time-average core flow

Fig. 4.3a shows the time-average core flow map for the period 1895-1985 constructed

by averaging the potentials � and � over the 19 epochs. The main features in the time-

average core flow include the same structures noted in the snapshots: A large anti-cyclonic

vortex centered near ����� ��>
 in the southern hemisphere, an anti-cyclonic vortex below

North America centered near ���?� ��	 
, and a westward jet below the mid-latitudes of

the southern hemisphere with peak intensity below Madagascar. Note that the Atlantic

hemisphere is more active overall than the Pacific hemisphere. The rms and maximum

absolute velocities of the time-average core flow are smaller than the velocities at individual

snapshots (Table 1), indicating that the time-average core flow has larger-scale and lower

kinetic energy than individual snapshots.

Fig. 4.3b shows the time-average zonal angular velocity profile for the time inter-

val 1895-1985. Fig. 4.4 shows the zonal azimuthal velocity (a), meridional velocity (b),
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Figure 4.3: Time-average core flow for 1895-1985, and time-average zonal angular veloc-
ity for the same time period. Contours in (a) are streamlines of the toroidal flow; grey scale
represents absolute upwelling value with + and - signs indicating upwelling and down-
welling, respectively.
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and tangential divergence (c) for the same time, and the non-dipolar magnetic flux inten-

sity of the time-average magnetic field between 1895-1985 (d). The net divergence in the

time-average flow as well as in the individual snapshot flows is practically zero within the

discretization error. As seen in Fig. 4.3b, the zonal time-average angular velocity is notice-

ably asymmetric with respect to the equator. At some latitudes it exceeds the traditional

��� Æ/yr westward drift estimate, particularly in the southern hemisphere, although its rms

value is only ��� Æ/yr. In the northern hemisphere the time-average zonal core flow is nearly

zero. The largest zonal angular velocities in Fig. 4.3b are in westward polar vortices. The

northern polar vortex reaches an angular velocity of ��� Æ/yr, more than �� times than the

maximal zonal angular velocity at low and mid-latitudes of the northern hemisphere. The

southern polar vortex reaches only ��� Æ/yr, but it still contains larger angular velocities

than elsewhere in the southern hemisphere. I note that equatorially-asymmetric zonal flow

outside the tangent cylinder and large symmetric westward polar vortices were found pre-

viously by Pais and Hulot (2000) in their time-average zonal core flow.

Zonal azimuthal velocities are correlated/anticorrelated with zonal meridional veloci-

ties in the southern/northern hemispheres, respectively, as expected for helical flow. For

example, in the northern hemisphere an upwelling is associated with a clockwise vortex in

accord with the helical flow assumption, yielding northward (negative) poloidal flow and

eastward (positive) toroidal flow on the northern part of the vortex. Zonal meridional ve-

locities inside the tangent cylinder are equatorward (Fig. 4.4b), as expected from upwelling

(Fig. 4.4c) below westward polar vortices (Figs. 4.3b and 4.4a) in helical flow.

The time-average zonal divergence (Fig. 4.4c) is anticorrelated with time-average zonal

intensity of the non-dipolar normal magnetic flux (Fig. 4.4d). More specifically, the equato-

rial intense normal polarity flux patches discussed by Jackson (2003) in Fig. 4.4d correlate

with convergence at the equator (Figs. 4.3a and 4.4c), and the Southern Atlantic magnetic

field anomaly correlates with mid-latitude divergence in the southern hemisphere. These
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Figure 4.4: Time-average zonal azimuthal velocity (a), meridional velocity (b), and diver-
gence (c) of the core flow and non-dipolar magnetic flux intensity (d), all for 1895-1985.
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correlations are consistent with frozen-flux behavior, where magnetic field is concentrated

by downwelling and dispersed by upwelling, and suggest that the meridional circulation

perturbs the time-average magnetic field from an axisymmetric dipole pattern.

4.4.1 Thermal wind in the core

Many authors have proposed that lower mantle heterogeneity may control some of the

fluid motion in the outer core (Gubbins and Richards, 1986; Bloxham and Jackson, 1990;

Zhang and Gubbins, 1992; Glatzmaier et al., 1999; Olson and Christensen, 2002; Chris-

tensen and Olson, 2003). One specific proposal is that large-scale core flow, especially

the zonal azimuthal part of core flow, is a thermal wind driven by lateral density gradients

induced by thermal coupling to the lower mantle (Bloxham and Jackson, 1990; Zhang and

Gubbins, 1992; Christensen and Olson, 2003). To test this hypothesis, I analyze the thermal

wind equation in spherical coordinates for a thick rotating fluid shell using my core flow

and models of mantle- and core-produced density heterogeneity. For simplicity, I ignore

the magnetic Lorentz force.

The vorticity equation for an incompressible, steady, inviscid, rotating, non-magnetic

fluid is given by Pedlosky (1987),

���� � �	�" � �����#

��
(4.6)

where �� is the rotation vector, �" is fluid velocity, � is density and # is pressure. Assuming

hydrostatic pressure,

�# � ����� (4.7)

where � is the gravitational acceleration, (4.6) becomes

���� � �	�" � �

�
���� ��	 (4.8)
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The azimuthal component of (4.8) just below the core-mantle boundary �� � �	 is

�"	
��

� � ��� �
�"	
��

�
��

����

�

��� �

��

��
(4.9)

where �� and �� are the density and gravitational acceleration at the core-mantle boundary,

respectively.

In a thin spherical shell the first term on the left hand side of (4.9) is negligible with

respect to the second term, yielding the form of the thermal wind equation commonly used

for the atmosphere and the ocean (e.g. Holton, 1992; Andrews, 2000). In this approxi-

mation the meridional density gradient balances radial velocity shear. In the outer core,

however, I expect that tangential and radial length-scales are comparable, and both terms

on the left hand side of (4.9) should be considered. The meridional shear �"	��� can be

calculated from my inverted core flow, but I need an independent way to estimate the radial

shear �"	��� in the core.

Inversions of the horizontal component of the magnetic induction equation using mea-

surements of changes in the horizontal component of the magnetic field on the core-mantle

boundary suggest that the vertical shear in the tangential velocity at the top of the core is

proportional to the tangential velocity there (Lloyd and Gubbins, 1990; Jackson and Blox-

ham, 1991). This argument is equivalent to assuming that the surface core flow correlates

with deep core flow. Jackson and Bloxham (1991) have proposed that the length-scale of

the vertical shear is one half the radius of the core, i.e.

��"�
��

 �
�"�
�

(4.10)

Adopting this assumption, (4.9) becomes

�

��
�

"	
���� �

	  ��
����

�

���� �

��

��
(4.11)
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4.4.2 Thermal coupling with the mantle

Possible mechanisms for core-mantle coupling include thermal, compositional and to-

pographic (Hide, 1967; Gubbins and Richards, 1986; Bloxham and Gubbins, 1987; Loper

and Lay, 1995; Schubert et al., 2001). Simple thermal core-mantle coupling assumes that

the temperature anomalies at the lower mantle are anticorrelated with the density anoma-

lies at the top of the core (Bloxham and Gubbins, 1987; Bloxham and Jackson, 1990). A

second assumption that is often made is that temperature anomalies are anti-correlated to

seismic shear velocity anomalies in the lower mantle (Forte and Mitrovica, 2001).

To model thermal coupling with the mantle, I assume density anomalies at the top of the

core are proportional to seismic shear velocity anomalies in the lower mantle as follows:

�

�

��

��
�
��� � @

��

���
��
������� (4.12)

Equation (4.12) involves several assumptions. First, the sign of @ depends on the type

of core-mantle coupling (Olson and Christensen, 2002). If thermal core-mantle coupling

prevails, I expect @ � �, i.e., a positive mantle seismic velocity anomaly produces a pos-

itive core density anomaly. If compositional coupling is dominant, I expect @ � �, i.e., a

positive velocity anomaly produces a negative density anomaly. Second, the relationship

between seismic shear velocity to temperature in the lower mantle is currently under de-

bate. For example, a recent study which separated mantle seismic velocity heterogeneity

into thermal and chemical contributions argues that most of the buoyancy in the lower man-

tle is dominated by chemical variations, and the temperature heterogeneity is very different

from the seismic velocity heterogeneity there (Trampert et al., 2004).

Figs. 4.5a and 4.5b show maps of the lower mantle seismic tomography of Li and

Romanowicz (1996) and Masters et al. (1996), hereafter referred to as LR and MJLB,

respectively. Both Figs. 4.5a and 4.5b were obtained by depth-averaging seismic shear ve-

locity anomalies in the lower mantle from a depth of ���� km to the core-mantle boundary.
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The large-scale features common to both models include (1) mid-latitudes of the northern

hemisphere are dominated by positive anomalies, whereas low and mid-latitudes of the

southern hemisphere are dominated by negative anomalies; (2) large negative anomalies

below Africa and the Pacific; and (3) large positive anomalies below north America, cen-

tral Asia and Antarctica. The two tomography models differ in some smaller-scale features,

which are not important here. Fig. 4.5c shows the zonal profiles of the seismic shear ve-

locity anomalies. Note that the typical wavelength is larger in the MJLB model, and the

magnitude is larger at the LR model. I use these models to calculate ������ and its zonal

average. Equation (4.12) is then used to connect ����� at the top of the core with ������

at the bottom of the mantle. Using ����� at the top of the core derived this way, I then

solve (4.11) for the core azimuthal flow "	 driven by the mantle.

4.4.3 Time-average core flow from numerical dynamos

In addition to a mantle origin, the time-average flow shown in Fig. 4.3 may also have

an origin in the core’s own dynamics. Convection in the core results in large-scale lat-

eral density gradients, a consequence of the spherical shell geometry and the constraints

of Earth’s rotation (Olson et al., 1999). A recent study of numerical dynamos with ho-

mogeneous core-mantle boundary conditions shows that thermal convection results in a

large-scale thermal wind flow, with a predictable pattern and an amplitude that depends

only on the buoyancy flux and the rotation rate (Aubert, 2005). Aubert (2005) verified that

a scaling law for the amplitude of this zonal flow previously proposed by Aurnou et al.

(2003) remains valid in the presence of a magnetic field.

I use a 3D, self-consistent numerical dynamo which solves simultaneously the full mag-

netohydrodynamics equations in a rotating, convecting sphere (Olson et al., 1999). I used

the following parameter values: �� � ���, �� � ����, �� � � and �� � �, where ��

is the Rayleigh number, �� is the Ekman number, �� is the Prandtl number and �� is the

79



(a)

0

2

%

0.88

(b)

0

%

Depth-average (2500km - CMB) zonal 
seismic shear anomaly [%]

Tangent cylinder

Tangent cylinder

-1.5 1.0 0.5 0.0

0

30N

60N

30S

60S

La
tit

ud
e

(c)

LR MJLB
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magnetic Prandtl number. I assume rigid boundaries with fixed temperatures. To obtain the

zonal angular velocity profile, I averaged the solution over  magnetic diffusion times. Fig.

4.6 shows the zonal core flow obtained from the numerical dynamo (depth averaged over

��� km below the outer boundary). Numerical dynamos over a wide range of parameters

produce similar time-average zonal flow pattern, although there are significant variations

in the zonal flow pattern in individual snapshots.

Fig. 4.6 shows a snapshot and the time-average zonal temperature and azimuthal ve-

locity profiles from the numerical dynamo. The basic convection structure consists of two

polar plumes and several equatorial plumes. The equatorial plumes wobble around the

equator with time, and at any instant the temperature profile deviates from equatorial sym-

metry (Fig. 4.6a). However, the time-average positions of equatorial plumes are very close

to the equator, and therefore the time-average temperature profile is nearly symmetric with

respect to the equator (Fig. 4.6c). The time-average azimuthal velocity field is mostly a

thermal wind flow driven by lateral gradients in the time-average temperature field. The

most intense zonal flow is within the inner core tangent cylinder, particularly the westward

polar vortex (Figs. 4.6b and 4.6d).

4.4.4 Interpretation of time-average core flow: Mantle versus core ori-

gins

Fig. 4.7 compares the zonal parts of core, tomographic, and dynamo flows, respectively.

The tomographic flows were scaled and shifted to best fit the core flow. The amplitude of

the numerical dynamo zonal flow �	 is related to the buoyancy flux using the following

scaling law:

�	 � ����
��	 � ��

��

�
	



��0�

��	 (4.13)
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Figure 4.6: Zonal temperature (a) and azimuthal velocity (b) from a snapshot, and time-
average zonal temperature (c) and azimuthal velocity (d), from a numerical dynamo with
�� � ���, �� � �� � �, �� � � and �� � �. In (b) and (d) solid lines are positive
zonal azimuthal velocities (eastward) and dotted lines are negative velocities (westward).
Maximum non-dimensional velocities are 2.84�� in (b) and 2.43�� in (d), where �� is the
Reynolds number.
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where ���� is the heat flux based Rayleigh number, �� is the inner core radius, 0 � � �
�� is the shell thickness and  is the buoyancy flux (Aubert, 2005). My scaling of �	

corresponds to a buoyancy flux of�  � ����� ����� which is within the range of estimated

values for this parameter at the outer core (Aurnou et al., 2003). The error bars in the

dynamo flow represent variation in time.

Fig. 4.7 shows that the dynamo flow can account for most of the zonal core flow at high

latitudes. Specifically, the westward polar vortices seen in the core flow are present in the

dynamo flow. In addition, the eastward flow at high latitudes outside the tangent cylinder in

the dynamo flow is in agreement with eastward motion at similar latitudes in the core flow.

However, core dynamics does not readily explain the asymmetry in the westward drift in

the core flow. The dynamo flow is practically zero within ��Æ of the equator, whereas the

core flow has substantial westward amplitude, particularly at mid-latitudes in the southern

hemisphere. Mantle-driven flow offers an explanation for this asymmetry. The southern

hemisphere has a larger westward drift than the northern hemisphere in both tomographic

flows. The LR tomographic flow has the same wavelength and phase as the core flow, and in

particular, reproduces the westward jet at ��> and the eastward flow at ��	 . Discrepancies

between the tomographic and core flows appear mostly in the equatorial region and in mid-

latitudes of the northern hemisphere.

Fig. 4.8 shows results of a test of the mantle-driven thermal wind over the entire core-

mantle boundary. Fig. 4.8a shows the meridional derivative of the seismic velocities from

the LR tomography model, and Fig. 4.8b shows the same quantity based on the thermal

wind balance (4.11) and the azimuthal core flow. The tomographic model has a significant

thermal wind in the Pacific hemisphere (Fig. 4.8a) where the historical secular variation and

the core flow are generally quiet (see Figs. 4.1, 4.2 and 4.3a). The opposite relation is found

in the Atlantic hemisphere. As a result, the global correlation is poor (Fig. 4.8c). Possible

explanations for the poor global correlation include non-zonal core flow is transient, i.e. the
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Figure 4.7: Zonal angular velocities from time-average core flow (solid + x), dynamo flow
(solid + error bars), LR tomographic flow (dotted), and MJLB tomographic flow (dashed).
Error bars in dynamo flow represent variation in time.
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��� years interval used in this study is marginally inadequate; core-mantle coupling is not

just thermal, as I assumed (see Trampert et al., 2004); or thermal wind is an over-simplified

model for core flow. It is also possible that over this time interval the global core flow

contains transients, but its zonal flow is essentially steady. For example, several studies

assumed steady core flow in an azimuthally drifting reference frame (Voorhies and Backus,

1985; Davis and Whaler, 1996; Holme and Whaler, 2001). In the mantle reference frame,

the azimuthal component of such a flow is transient, but its zonal component is steady.

My results have some similarities as well as some differences with other thermal wind

interpretations of mantle-driven core flow. Bloxham and Jackson (1990) used the thermal

wind equation to diagnose mantle density anomalies consistent with a model of core flow.

Their results reproduce the thermal anomaly in the mantle below the Southern Indian Ocean

associated with the circulatory core flow there. At that region, my time-average core flow

contains the same feature (Fig. 4.3a), and my mantle-driven thermal wind correlation is

good (Figs. 4.8a and 4.8b). However, globally my core flow and the core flow of Bloxham

and Jackson (1990) do not explain well the seismic data by thermal wind. Comparisons can

also be made between my results and thermal wind models from numerical dynamos with

heterogeneous boundary conditions. Zhang and Gubbins (1992) investigated the effect of

thermal wind driven by mantle heterogeneity in a kinematic dynamo model. They found

that core flow structure is shifted in longitude with respect to mantle density anomalies,

so that core upwellings occur where the mantle density anomalies change sign. I find this

type of correlation in a few places, for example below the Southern Indian Ocean and

below the Northern Atlantic Ocean (Figs. 4.3a and 4.5a). Olson and Christensen (2002)

applied the MJLB lower mantle tomography model as a boundary condition in numerical

dynamos with thermal core-mantle coupling. Their time-average flow contains a southern

hemisphere vortex similar to ours, but the circulation in their dynamo model below North

America is the reverse of ours. The discrepancy below North America could be because my
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core flow is transient there, or the tomographic dynamo of Olson and Christensen (2002)

has the wrong core-mantle coupling in that location.

In summary, several important features of my time-average zonal core flow are in agree-

ment with thermal wind driven by lower mantle lateral heterogeneities, while other struc-

tures appear to have their origin in the core’s own dynamics. Likely mantle-driven features

include hemispherical asymmetry in the westward drift, westward polar vortices, and a

westward jet in the southern hemisphere at the latitude predicted by thermal coupling with

the mantle. The equatorial asymmetry of the core flow at mid-latitudes appears to have a

mantle origin, because the expected core-driven zonal flow is both very weak and highly

symmetric there. The westward polar vortices and eastward flow near latitudes ��	 and

��> may have a core origin. Globally, the azimuthal core flow is not well-correlated with

mantle tomographic thermal wind. Possible explanations of this poor correlation include

the short record used for averaging the core flow, non-thermal wind core flow components,

and my over-simplified core-mantle coupling model. However, my results are consistent

with the interpretation that the zonal part of the ��� year average core flow approximates

steady-state flow at the top of the core.

4.5 Time-dependent core flow

Time-dependent core flow implies changes in the angular momentum of the core, which

can be compared with observations of length-of-day variations. Fig. 4.9 shows the zonal

angular velocity profiles from my core flow snapshots at 5 year intervals between 1895-

1985. The center of the envelope of curves represents the time-average zonal flow, and the

width of the envelope is a measure of its time-dependence. Statistics of the time-dependent

flow are given in Table 1. Several points are worth emphasizing here. First, the ratio of

standard deviation to mean of the rms velocities of snapshots, which represents the ratio of
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time-dependent to time-average parts of my core flow, is ����. Second, time-dependence

is generally larger in the northern hemisphere; indeed the drift reverses its direction in some

years. The westward drift at mid-latitudes of the southern hemisphere is more persistent

in time and its peak angular velocity varies between ���� � �� Æ���. Third, the polar

vortices are evident in all profiles, despite the resolution problems in the relatively small

polar cap area. A strong westward polar vortex (��������� Æ���) is evident in the northern

polar cap, and a less intense polar vortex (����� ��� Æ���) is evident in the south.

Residual zonal flows were obtained by subtracting the time-average flow (Fig. 4.3b)

from the zonal flow snapshots (Fig. 4.9). The parts of the residual flow symmetric with

respect to the equator were then calculated. These equatorially-symmetric residual zonal

flows represent the part of the core flow contributing to changes in the core’s angular mo-

mentum. The ratio of symmetric to anti-symmetric parts of the residual zonal flows is

shown in Fig. 4.10. The most symmetric zonal flow occurred at 1970, and the least sym-

metric zonal flow occurred at 1910. This is in agreement with previous studies, which found

that core flows are more symmetric after 1970 than before (Jault et al., 1988; Jackson et al.,

1993).

4.5.1 Length-of-day variations theory

Observations of length-of-day variations can be related to changes in the core’s angular

momentum, assuming conservation of angular momentum in the core-mantle system. The

Earth changes its rotation rate on several time-scales, from seasonal fluctuations originating

in the atmosphere (Eubanks et al., 1985) to geological time-scale fluctuations originating

in the mantle (Munk and Mcdonald, 1960). Well-known contributions to length-of-day

variations include lunar tidal dissipation (���� ���� �� � ����) and postglacial rebound

in polar regions (���� � ��� �� � ����) which combine to a ��� � ���� �� � ���� secular

increase in the length-of-day over the last 2700 years (Stephenson and Morrison, 1995).
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Zonal angular velocity profiles, 1895-1985 [deg/yr]
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Figure 4.9: Core flow angular velocity profiles for 1895-1985 in 5 years intervals.
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Figure 4.10: Ratio of symmetric to anti-symmetric zonal residual angular velocities for
1895-1985 in 5 years intervals.

Only the decadal variations are usually attributed to time-dependent differential rotation in

Earth’s liquid outer core (Jault et al., 1988; Jackson et al., 1993; Jackson, 1997; Pais and

Hulot, 2000; Hide et al., 2000; Holme and Whaler, 2001).

Calculation of changes in the core’s angular momentum from knowledge of core flow

just below the core-mantle boundary requires projection of that flow into the volume of the

outer core. Bullard and Gellman (1954) suggested that zonal core flow is geostrophic and

consists of cylinders in solid body rotation about the Earth’s axis of rotation. Taylor (1963)

showed that for an inviscid fluid, steady motions of this type are possible when the couple

exerted by Lorentz forces on those concentric cylinders vanishes (a condition known as

Taylor’s constraint). This cylindrical projection was used by Jault et al. (1988) to com-

pare observed versus calculated length-of-day variations. The exact coupling mechanism

between the core and the mantle is disputed. Jault and LeMouël (1989) calculated angular

momentum transfer between the core and the mantle assuming topographic torques linked
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with rigid body flow along such cylinders. Later, Jault and LeMouël (1991) argued that,

if the amplitude of core-mantle boundary topography is as large as suggested by seismol-

ogists, then topographic torque is too large to account for length-of-day variations. They

proposed an electromagnetic torque as a coupling mechanism. Regardless of the coupling

mechanism to the mantle, most studies agree that the angular momentum-containing slow

motion within the core is along concentric cylinders about the Earth’s axis of rotation (Jault

et al., 1988; Jackson et al., 1993; Jackson, 1997; Pais and Hulot, 2000).

Changes in length-of-day Æ� caused by core motions can be expressed as

Æ� � 	 �
��

��A
 � A�	

�!
Æ+�� 	 (4.14)

where A
 � ���� � ���� �� ��� and A� � ��� � ���� �� ��� are the moments of inertia of

the core and the mantle respectively, �� � �� hours, and

Æ+�� 	 � �!

� �

��

� �

�

���	Æ
	��� ��  	�

 ���� �<�<� (4.15)

is the time-residual angular momentum component in the direction of the rotation axis

associated with the core motions relative to the mantle (Jackson et al., 1993). In (4.15) ��

is the radius of the inner core boundary, � is the radius of the core-mantle boundary, � is

core density, and Æ
	 is the zonal angular velocity residual, the deviation of the profiles


	��� ��  	 shown in Fig. 4.9 from the time-average profile shown in Fig. 4.3b.

To compute Æ+�� 	, the time-average zonal core flow is subtracted from 
	��� ��  	, and

the even (symmetric with respect to the equator) angular velocity time residual Æ
	��� ��  	

is found. To project along concentric cylinders in a spherical coordinate system, the fol-

lowing expression is used:

Æ
	��� ��  	 � Æ
	��� ���  	 (4.16)

where �� � ������ �
�
��� �	 is the co-latitude where an axial cylinder passing through the

point (�, �) intersects the core-mantle boundary.
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Although previous studies have ignored the depth-dependent density in the outer core

(e.g. Jault et al., 1988; Jackson et al., 1993; Jackson, 1997; Pais and Hulot, 2000), I use

the radial density profile model of Dziewonski and Anderson (1981) to evaluate the radial

density profile in (4.15). Note that the inner core is not included in (4.15). The inner core

has a small volume fraction and even smaller moment of inertia with respect to the whole

core (Stacey, 1992), and therefore its contribution to the angular momentum of the entire

core is negligible.

4.5.2 Comparison with observed length-of-day variations

Fig. 4.11 shows the Æ� calculated from my surface core flow and (4.14) - (4.16) versus

the observed length-of-day variations since 1895. A linear trend of ��� �� � ���� has been

subtracted from the observations to remove the secular increase in Earth’s rotation rate due

to the long-term causes listed above. Although my calculated length-of-day variations have

a larger amplitude then observed, there is a reasonable agreement in terms of general trend

and peak-to-peak-correlation.

Some previous studies have obtained better fits between calculated and observed length-

of-day variations than ours, especially the amplitude of the variation (Jackson et al., 1993;

Jackson, 1997). However, those fits were obtained by linking the core flow at different

epochs. Jackson (1997) linked different epochs by minimizing the temporal variations of

the flow, and Holme (1998) linked different epochs by minimizing the length-of-day varia-

tions misfit. In addition, some previous studies improved their fit by using time-dependent

spectral tapering to account for the increasing uncertainty in older data (Jackson, 1997; Pais

and Hulot, 2000). I do not constrain my snapshot flows these ways. Instead I invert for the

core flow at each epoch independently, so my snapshot flows are uncoupled. In addition,

I keep my model parameters fixed over time. Because my snapshot flows are not linked

and my model parameters are time-independent, I view the length-of-day comparison as an
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Figure 4.11: Observed versus calculated length-of-day variations. A linear trend of ���
�� � ���� has been removed from the observations.

independent test of my core flow solution.

4.5.3 Torsional oscillations model for time-dependent core flow

The correlation between the observed and calculated length-of-day variations does not

answer the question of what mechanism is responsible for the time-dependent motions

in the core, but many authors have argued that the mechanism is torsional oscillations.

Braginsky (1970) provided a theoretical basis for torsional oscillations within the outer

core, and estimated that these oscillations have a period of about �� years. Jault et al.

(1996) argued that core-mantle angular momentum exchange is a by-product of angular

momentum exchange among different cylinders inside the outer core, through torsional

oscillations. Zatman and Bloxham (1997) fitted the even residual zonal surface flow for

the time interval 1900-1990 to a torsional oscillations model and found two damped waves
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with periods of ���� and ���� years. Bloxham et al. (2002) assumed steady acceleration

to fit the time interval 1957-2001 and found three damped waves with periods of ��, ��

and � years. They also argued that torsional oscillations are the mechanism responsible

for the observed geomagnetic jerks, which are abrupt changes in the secular acceleration

of the geomagnetic field.

Following Zatman and Bloxham (1997) and Bloxham et al. (2002), I fit a torsional

oscillations model to the time-dependent part of my zonal core flow. I use a two-wave

model for the equatorially-symmetric time-dependent zonal velocity

Æ"	���  	 � *���	 ����
�!

��

 � B���		 � *���	 ����
�!

��

 � B���		 (4.17)

where *, � and B are the amplitudes, periods and phases of the two waves. Figs. 4.12a

and 4.12b show Æ"	 from my core flow model and from the least-squares fit to (4.17),

respectively. The best-fit periods are �� � ��� years and �� � ��� years. Note that the

largest amplitudes occur at high latitudes and in the equatorial region. The misfit is shown

in Fig. 4.12c. The ratio of the misfit (Fig. 4.12c) rms to the core flow (Fig. 4.12a) rms is

����.

The average of my periods, ��� years, as well as the average of the two periods found

by Zatman and Bloxham (1997), ���� years, are very close to the �� years period estimated

by Braginsky (1970). My high frequency wave has a period close to the one found by

Zatman and Bloxham (1997), but my low frequency wave has a larger period than theirs.

In contrast, the periods found by Bloxham et al. (2002) are substantially smaller than ours.

Fig. 4.13 shows the latitude-dependent wave amplitudes and phases. Both waves have

local amplitude maxima at the equator, but wave 1 also has a significant local maximum

near latitude ��. These are not simple standing or propagating waves, since their phases are

latitude-dependent. I searched for models with simpler phase relationships, unsuccessfully.

For a model with the same periods �� � ��� years and �� � ��� years and B� � �,
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Figure 4.12: Core flow (a), two-wave model (b); and misfit between core flow and two-
wave model (c).
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Figure 4.13: Torsional oscillations model wave parameters.

the quality of fit decreases only by ��, but B� still depends strongly on latitude. I then

set both phases constant for the period of time 1940-1985 and found best-fit in periods

of �� � ���� years and �� � ���� years, and the quality of fit decreases by ���. The

similarity of the periods (especially ��) obtained this way to those obtained for the whole

1895-1985 time interval demonstrates they are not a consequence of the sampling interval,

but are robust features of the symmetric residual zonal velocities. In summary, I find that

the symmetric zonal part of the time-dependent core flow can be successfully fitted using a

sum of two harmonic functions with constant periods, and this may be evidence to torsional

oscillations at the Earth’s core on decadal time-scales. I found that the periods are robust,

but the complex phase relationships indicate that these torsional oscillations are not simple

standing or propagating waves.
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4.6 Summary

I have inverted geomagnetic secular variation data for the fluid flow below the core-

mantle boundary at � year intervals between 1895-1985. I decompose the core flow into

time-average and time-dependent parts. The time-average zonal core flow, which may rep-

resent a long-term steady flow at the top of the core, is compared with models of thermal

wind at the top of the core driven by density anomalies originating in the core and the man-

tle. Core-origin flow can account for large westward polar vortices and eastward flow at

high latitudes outside the tangent cylinder. Mantle-driven thermal wind seems to account

for the hemispherical asymmetry at low and mid-latitudes. The time-dependent part of

my core flow is in overall agreement with decade-scale length-of-day variations, and a tor-

sional oscillations model with periods near �� and �� years but complex phase relationships

provides an adequate fit to this part of my core flow.
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Epoch �"� � "	 � � "� � �� � �"�
max rms max rms max rms range rms

1895 105.59 11.94 9.54 2.94 1.46 0.53 -0.16,0.14 0.056
1900 110.40 12.45 10.13 3.08 1.63 0.54 -0.15,0.16 0.062
1905 125.98 13.18 10.73 3.40 1.79 0.56 -0.13,0.17 0.068
1910 132.01 14.18 11.88 3.92 1.93 0.66 -0.17,0.19 0.073
1915 128.66 14.77 13.61 4.53 2.11 0.77 -0.19,0.21 0.077
1920 123.62 14.74 15.09 4.96 2.36 0.90 -0.23,0.23 0.083
1925 120.96 14.71 15.95 5.42 2.55 1.00 -0.27,0.24 0.091
1930 153.94 14.60 16.22 6.12 2.70 1.07 -0.31,0.25 0.100
1935 146.95 13.05 14.31 6.16 2.49 1.01 -0.30,0.21 0.094
1940 145.09 13.74 14.79 7.05 2.50 1.04 -0.30,0.21 0.098
1945 149.57 14.44 15.13 7.40 2.51 1.06 -0.30,0.21 0.099
1950 118.34 12.50 12.95 5.67 1.81 0.78 -0.21,0.17 0.074
1955 100.02 11.88 12.60 5.03 1.40 0.59 -0.13,0.17 0.058
1960 114.63 11.78 12.50 5.31 1.14 0.45 -0.08,0.19 0.053
1965 125.98 11.61 12.08 5.77 1.03 0.41 -0.07,0.22 0.054
1970 120.47 11.44 11.60 5.57 1.07 0.43 -0.08,0.25 0.057
1975 101.65 11.72 11.79 4.96 1.22 0.51 -0.13,0.28 0.062
1980 82.58 11.94 12.31 4.27 1.35 0.58 -0.19,0.30 0.066
1985 92.77 11.99 12.52 3.69 1.43 0.64 -0.24,0.31 0.072

Standard deviation 15.02 1.11 1.54 0.99 0.49 0.20 0.07,0.04 0.013
Time-average 78.69 11.27 12.09 3.60 1.74 0.63 -0.18,0.17 0.063

Table 4.1: Core flow statistics. �� denotes zonal average, rms is areal-average of absolute
velocities; standard deviation is with respect to the mean of the epoch values; time-average
velocities are from the average of the potentials � and � at all epochs. Maximum zonal
values are outside the tangent cylinder; maximum zonal azimuthal velocity is westward,
maximum zonal meridional velocity is northward; positive divergence is upwelling and
negative divergence is downwelling. All velocities are km/yr; divergence is 1/century.
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Chapter 5

Testing core flow recovery using

numerical dynamos

5.1 Introduction

Models of fluid flow at the top of the Earth’s outer core have been obtained by inverting

geomagnetic secular variation data using the assumption of frozen magnetic flux (Gire et

al., 1986; Voorhies, 1986; Bloxham, 1989; Gire and LeMouël, 1990; Bloxham and Jack-

son, 1991; Jackson et al., 1993; Pais and Hulot, 2000; Hulot et al., 2002; Amit and Olson,

2004; Amit and Olson, 2005). These inversions suffer from several problems including

unmodeled magnetic diffusion, data truncation, inaccurate modeling of the tangential di-

vergence of the core flow, and non-uniqueness. Thus, core flow models differ from each

other substantially.

The differences between core flow models obtained from the same secular variation data

indicate the need for objective testing. Rau et al. (2000) proposed a core flow inversion

test using synthetic secular variation data produced by 3D self-consistent magnetohydro-

dynamic dynamo models in a spherical shell. Their inversion method assumed tangential
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geostrophy or pure toroidal flow, and used a spectral numerical method. Rau et al. (2000)

succeeded in recovering most of the main features of the flow, but their results highlighted

several problems: (1) The correct flow magnitude is obtained only by degrading the data

misfit; (2) unmodeled magnetic diffusion effects contaminate the flow pattern; and (3) data

truncation effects might cause flow artifacts.

Recently Amit and Olson (2004) proposed a new core flow inversion method. They as-

sumed that the tangential divergence of the flow is a superposition of tangential geostrophy

(e.g. LeMouël, 1984), and helical flow in which the tangential divergence is correlated with

the radial vorticity. They solved a set of partial differential equations for the flow potentials

on a grid. The helical flow assumption is common in rotating-convecting flows, as shown

by analytical examples (Amit and Olson, 2004) and in numerical dynamos (Olson et al.,

2002). I test my core flow imaging method using the output of numerical dynamo models.

I compare the inverted flow with the true dynamo flow to assess the quality of my inversion

method.

5.2 Numerical dynamo models

Recent numerical dynamos model magnetic field generation by thermal convection of

an electrically conducting fluid in a rotating spherical shell (e.g. Olson et al., 1999). The

model solves the full 3D non-dimensional incompressible magnetohydrodynamics equa-

tions for the velocity vector �", the magnetic field vector �, and the temperature �

���
��"

� 
� �" � ��"����"	 � ��1 � �"��� � ��

��

�
� �

�

��
��� �	� � (5.1)

� �

� 
� �� ��"� �	 �

�

��
�� � (5.2)

��

� 
� �" � �� �

�

��
��� (5.3)

� � �" � � (5.4)

100



� � � � � � (5.5)

where  is time, �1 is a unit vector in the direction of the rotation axis, � is pressure, and ��

is the position vector. Four non-dimensional parameters in (5.1) - (5.5) control the dynamo

action. The (modified) Rayleigh number represents the strength of convection

�� �
/����0

&�
� (5.6)

where / is thermal expansivity, �� is gravitational acceleration on the outer boundary at

radius �, �� is temperature difference between the inner and outer boundaries, 0 is shell

thickness, & is kinematic viscosity, and � is rotation rate. The Ekman number represents

the ratio of viscous and Coriolis forces

�� �
&

�0�
� (5.7)

the Prandtl number is the ratio of kinematic viscosity to thermal diffusivity '

�� �
&

'
� (5.8)

and the magnetic Prandtl number is the ratio of viscosity to magnetic diffusivity �

�� �
&

�
� (5.9)

I selected four cases from a larger set of cases from a systematic parameter space study

(Christensen et al., 1999; Olson and Christensen, 2002). Table 5.1 summarizes the param-

eters, boundary conditions, resolution, and the depth of “free stream velocity” below the

Ekman boundary layer for the four cases I examined. In all cases the boundaries are rigid,

the regions outside the shell are perfect insulators, and the inner boundary temperature is

fixed. The outer boundary has fixed temperature in cases 1 and 2, fixed uniform heat flux in

case 3, and heat flow based on the lowermost mantle seismic tomography model of Masters

et al. (1996) in case 4. Cases 1 and 2 have a lower resolution with respect to cases 3 and
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4. In all cases the dynamo models reached a state of statistical equilibrium, i.e. the mag-

netic and kinetic energies fluctuated chaotically without a secular trend. In all cases the

dipole mode dominates the magnetic energy spectrum, and a significant secular variation

is present.

Case 1 Case 2 Case 3 Case 4
�� 3E5 2.4E5 �����
���	 1.5E7 �����
���	 1.5E7 �����
���	
�� 1E-3 1E-3 1E-4 1E-4
�� 1 1 1 1
�� 4 3 2 2
�
�� fixed fixed uniform heat flux tomographic
���� 53 42 85 85
	� 33 33 41 41
�� 0.03834 0.03834 0.02474 0.02474
� 16.975e-4 4.00066e-3 10.1060e-5 9.29280e-5
�� 111 70 319 314
��
� 145 122 189 195

Table 5.1: Experimental setup. ��, ��, �� and �� are the (modified) Rayleigh, Ekman,
Prandtl and magnetic Prandtl numbers, respectively. �
�� represents the type of thermal
boundary condition applied on the outer boundary. ���� is the maximal spherical harmonic,
and 	� is the number of radial grid points. �� is the non-dimensional Ekman boundary
layer thickness, the depth of the “free stream” where the dynamo velocity is considered
for reference. � is the time difference (in units of viscous diffusion time) between the
two � snapshots from which the average magnetic field and the difference secular vari-
ation were calculated. The magnetic Reynolds number �� is calculated by averaging the
dynamo output in volume and time, where the core’s radius is taken as a length-scale; in
the effective magnetic Reynolds number ��

� I use �!����� as a length-scale, where the
average magnetic harmonic is given in terms of the magnetic power spectrum �

���	 by
��� �

�
� ��

��
�

� �
�.

The secular variation ���� was determined by finite-differencing of � in time, using

two snapshots of the magnetic field at times  and  � � . Two corresponding snapshots

of the velocity field at the top of the “free stream” just below the Ekman boundary layer

were averaged to obtain the dynamo flow �"�� that is compared with the inverted flow �"�.

Due to computational limitations, numerical dynamos use an Ekman number larger than
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the core’s, and therefore, the Ekman boundary layer in the dynamo models is thicker than

in the core. Nevertheless, the magnetic boundary layer is thicker than the Ekman boundary

layer (Rau et al., 2000), so it is safe to compute the secular variation at the outer boundary,

and the dynamo velocity just below the Ekman boundary layer.

5.3 Inversion method

The fluid flow just below the outer boundary �"� can be obtained from the radial com-

ponent of the magnetic field � and its time derivative ���� on the outer boundary. The

radial component of (5.2) just below the outer boundary is

��

� 
� �"� � �� ���� � �"� � �

��
�
�

��
��

���
����	 ���

��	 � (5.10)

where � is the radial coordinate and ��
� � �� � �

��
�
��
��� �

��
	. The first term on the right

hand side of (5.10) cannot be computed from geomagnetic data because the variation of

� with depth is unknown, but knowing � at the outer boundary the second term can be

calculated. In the customary frozen-flux approximation both terms on the right hand side

of (5.10) are neglected (Roberts and Scott, 1965).

The tangential velocity can generally be expressed in terms of a streamfunction � and

a scalar potential � as

�"� � �"��� � �"��� � ����� ���� � (5.11)

where �� is the unit radial vector, and �� � �� ���� in a spherical coordinate system ��,

�, �	. Substitution of (5.11) into (5.10) yields
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where � is the core radius.
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Amit and Olson (2005) modeled the tangential divergence of velocity by a superposi-

tion of the previously-used tangential geostrophy assumption (LeMouël, 1984; Gire and

LeMouël, 1990; Jackson, 1997; Hulot et al., 2002), and a helical flow assumption

�� � �"� � 
�6 �
��� �

�
"� � (5.13)

The first term on the right hand side of (5.13) represents the helical flow assumption. It

assumes that the tangential divergence is correlated with the radial vorticity 6 , where the

minus sign applies to the northern hemisphere and the plus sign to the southern hemisphere.

The second term on the right hand side of (5.13) represents the tangential geostrophy as-

sumption. Substitution of (5.11) into (5.13) yields

��

�� � 
���

���
 �5�

��
�
�

�45�

��

��
�

��

��
	 � (5.14)

The non-dimensional constant � is essentially a free parameter and describes the strength of

helicity in the core. Simple analytical models of rotational flows and results from numerical

dynamos suggest that ��� � � � ���� (Amit and Olson, 2004).

I have solved (5.12) and (5.14) simultaneously in an iterative way to obtain the poten-

tials � and � just below the outer boundary. I have used a second order, central finite-

difference method on a regular spherical grid with radius �. My method is identical to

the one used by Amit and Olson (2005), including a special treatment of the equatorial

region as a non-geostrophic belt. The numerical convergence of my method relies on pos-

itive effective streamfunction diffusivity, therefore the sign of � in the helical flow term

(part of last term on the left hand side of (5.12)) is reversed in areas of reversed magnetic

flux (Amit and Olson, 2004). In some solutions frozen-flux is assumed and both terms on

the right hand side of (5.12) are neglected, and in others the term representing tangential

magnetic diffusion is included in the inversions.

The areal-average deviation of the secular variation from its forward calculated value

based on (5.12), normalized by the areal-average secular variation, is defined as the secular
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variation misfit $��. Similarly, the areal-average deviation of (5.14) from equality, normal-

ized by the areal-average tangential divergence, is defined as the divergence misfit $��� .

Those misfits are used to verify and quantify the convergence of the iterative inversion

scheme.

5.4 Statistic measures of the flow recovery

I evaluate the quality of fit in terms of flow magnitude and flow pattern by comparing

the inverted velocity �"� with the dynamo velocity �"��. The agreement in magnitude is

evaluated by the ratio of the areal-average inverted velocity to the areal-average dynamo

velocity, and similarly by the ratio of their maximum absolute velocities. The quality of fit

of the flow pattern is evaluated by the correlation coefficient (Rau et al., 2000)

� �

�
�"� � �"��<>��

�"� � �"�<>
�

�"�� � �"��<>
� (5.15)

where <> is an area element on the outer boundary. A more severe statistical test measures

the pointwise quality of the flow recovery, defined by the areal-average absolute vector

difference between the inverted and dynamo velocities, ��"�� �"���, normalized by the areal-

average absolute dynamo velocity

# � ��
� ��"� � �"���<>� ��"���<> � (5.16)

Large values of � and # correspond to high-quality recovery of flow. The reference

value for #, i.e. the value from two random velocity vectors of the same magnitude, is

����� (����). In addition, note that � is a measure of pattern, but # is also affceted by the

magnitude.
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5.5 Results

5.5.1 Large-scale dynamos

I begin by describing the inversions of relatively large-scale numerical dynamos. Fig.

5.1 shows the radial magnetic field and secular variation of case 1. The global magnetic

field morphology is similar to the geomagnetic field on the core-mantle boundary, with

dipolar dominance and intense flux at high-latitudes. Also, the typical length-scale of the

secular variation is smaller than the length-scale of the magnetic field, as is observed for

the geomagnetic field on the core-mantle boundary (Hulot et al., 2002). However, some

local morphological differences are worth noting. The geomagnetic field in the equatorial

region contains high-intensity normal polarity flux (Jackson, 2003), as opposed to the dy-

namo magnetic field that contains very low-intensity flux there (Fig. 5.1a). Also, a large

and intense reversed geomagnetic field structure like the one below mid-latitudes of the

Southern Atlantic Ocean is not evident in the dynamo magnetic field.

Figs. 5.2a and 5.2b show the true dynamo velocity and the inverted velocity, respec-

tively. The inverted velocity is obtained using � � ��� with tangential magnetic diffusion

included. Due to the relatively low spatial resolution used in the dynamo model (see Table

5.1), a �Æ � �Æ grid was sufficient for the inversion. The statistics of case 1 is summarized

in Table 5.2.

The dynamo flow is characterized by high-latitude vortices, strong meridional jets due

to columnar convection, some equatorial symmetry, and a significant amount of flow along

�-contours. Most of the main flow features in the dynamo flow are also present in the

inverted flow. In the northern hemisphere, the vortices centered at ������ ����	 
 and

������ ����	 
 (Fig. 5.2a) appear with the correct position and direction of circulation

in the inverted flow (Fig. 5.2b). Northward jets at ��� and ��� and southward jets at ���

and ��� and most southern hemispheric main flow features are also well-recovered. For
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Figure 5.1: Radial magnetic field (a) and secular variation (b) on the outer boundary for
case 1. Grey scale represents absolute values, solid lines are positive, dotted lines are
negative.
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Figure 5.2: Dynamo flow (a) and inverted flow (b) for case 1 with tangential magnetic
diffusion. Maximum velocity in (a) is 100.04, and velocity in (b) scales according to (a).
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Case k ��
�� ��"������"���� �"�� �"�

� � ��� # % $�� $���

1 0.1 no 0.80 0.71 0.464 0.525 3.97 0.2 2.7
1 0.07 no 1.05 0.86 0.457 0.517 -1.75 0.2 4.1
1 0.05 no 1.35 1.03 0.434 0.492 -11.99 0.3 5.7
1 0.1 yes 0.90 0.79 0.513 0.590 7.56 0.7 2.8
2a 0.1 no 0.85 0.76 0.251 0.278 -10.44 2.42 5.42
2a 0.1 yes 0.74 0.76 0.480 0.555 7.51 0.47 3.22
2b 0.1 no 0.79 0.53 0.305 0.381 0.82 1.85 1.93
2b 0.1 yes 0.91 0.64 0.521 0.644 13.40 0.25 2.22

Table 5.2: Statistics of cases 1 and 2. �"� is the inverted velocity, �"�� is the true dynamo
velocity. �� and � denote absolute value and maximum, respectively. �" denotes the areal-
average of �". 2a and 2b are two different snapshots of the same simulation. � is the cor-
relation coefficient defined in (5.15), ��� is the same coefficient excluding the ��Æ latitude
band around the equator, # is the pointwise correlation defined in (5.16). $�� and $��� are
the secular variation and divergence misfits in %, respectively.

example, the vortices centered at ������ ����>
 and ������ ���>
 are recovered by the

inverted flow both in terms of position and direction of circulation. The vortex centered at

������ ����>
 in the dynamo flow is shifted by about ��Æ to the southwest in the inverted

flow.

In some places the inversion fails to recover the dynamo flow. For example, the anti-

cyclonic vortex centered at ����� ����	 
 is not found in the inversion. Also, between

longitudes ���� ���� the meridional jets in the inverted flow connect by a eastward flow

at latitudes ����	 � ���	 , whereas in the dynamo flow this region exhibits a shear flow.

Previously-used physical assumptions for the tangential divergence of the flow do not

solve the problem of non-uniqueness completely. Spectral methods handle this problem

by minimizing the null-space vector contribution to the flow solutions. My helical flow

assumption removes non-uniqueness; therefore, there is no null-space vector in my inver-

sions (Amit and Olson, 2004). Some of the main flow features in the dynamo flow contain

significant toroidal flow along �-contours, and this flow component is well-recovered by

the inverted flow. The secular variation associated with these flow structures arise from ad-
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vection and stretching by poloidal flow; my helical-geostrophic toroidal-poloidal coupling

model allows to constrain these flows. For example, the main magnetic field structure

in the northern hemisphere is a large and intense normal flux located between longitudes

����� ��� and between latitudes �	 � ��	 (Fig. 5.1a). The dynamo flow at that area

is a cyclonic vortex with a significant flow component along �-contours (Fig. 5.2a). This

vortex is well-recovered by the inverted flow (Fig. 5.2b). Note that the eastern margin of

the magnetic flux structure is oriented north-south and coincides with the northward jet in

the dynamo and inverted flows.

The dynamo flow in the equatorial region is very weak (Fig. 5.2a). Nevertheless, the

inversion predicts some flow, mostly zonal, in that region (Fig. 5.2b). Olson et al. (1999)

found that the zonal displacement of magnetic flux at low-latitudes is not due to zonal flow,

but due to magnetic diffusion effects. Similar interpretation to equatorial flow artifacts was

given by Rau et al. (2000). These flow artifacts degrade the statistics of the fit significantly.

Magnetic diffusion effects are more pronounced for the fully resolved magnetic fields

of dynamo models than they are for the geomagnetic field truncated to a moderate spherical

harmonic degree. In geomagnetic core flow inversions, the full magnetic diffusion effect

cannot be considered because the geomagnetic field is only known over the core-mantle

boundary, and its radial variation is unknown. However, the tangential part of magnetic

diffusion can be calculated. I have examined the effects of tangential magnetic diffusion

on the quality of flow recovery by comparing inversions with and without the second term

on the right hand side of (5.12). Including tangential magnetic diffusion has improved the

inverted flow, by global pattern at about ���� (see � values in Table 5.2), and by pointwise

correlation at about ��� (see # values in Table 5.2).

The choice of the non-dimensional parameter � is mostly affecting the magnitude of the

flow (Amit and Olson, 2004), and can be “tuned” to fit best the magnitude of the dynamo

flow. I find that the optimized value is � � ���� (Table 5.2), as the best-fit ratio of tangential
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divergence and radial vorticity in numerical dynamos (Olson et al., 2002). Spectral methods

“tune” the taper parameter to fit best both the magnitude and the scale of the flow. In

contrast to the taper parameter, the choice of � does not degrade my inversion misfits; my

inversions contain much smaller misfits than the ones obtained by Rau et al. (2000).

The flow recovery seems to be successful, based on qualitative identification of flow

features and global statistics; however, it is important to note that the pointwise flow re-

covery is very poor. The magnitude of the difference vector ��"� � �"��� is comparable to the

magnitude of the dynamo velocity vector ��"��� itself (see low # values in Table 5.2), and not

significantly smaller as might be expected from a residual to a successful fit.

In the second large-scale dynamo case 2, the magnetic Reynolds number is lower than

in case 1. Fig. 5.3 shows the radial magnetic field and secular variation of case 2. As in

case 1, the magnetic field morphology is dominantly dipolar. Figs. 5.4a and 5.4b show the

true dynamo velocity and the inverted velocity, respectively. Because of the lower magnetic

Reynolds number, effects of diffusion are much stronger here than in case 1. Indeed, the

improvement in the quality of recovery by accounting for tangential magnetic diffusion is

remarkable in case 2. For two different snapshots of the same case, 2a and 2b, including

tangential magnetic diffusion has improved the the correlation coefficient at about �����

and ����� respectively (see � values in Table 5.2). The inversions of cases 2a and 2b

without tangential magnetic diffusion are less successful than case 1, but with tangential

magnetic diffusion the recoveries are comparable.

The quality of the flow recovery is degraded in the equatorial region, where (1) effects

of radial magnetic diffusion are large, and (2) my inversion method is weak due to the

reversed flux patches in numerical dynamos there. I repeated the calculation of the corre-

lation coefficient, this time excluding the ��Æ low-latitudes from the integration in (5.15).

For example, case 2b with tangential magnetic diffusion has a correlation coefficient of

� � �����. Excluding the band ���Æ around the equator gives � � ����� for this case, and
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Figure 5.3: Radial magnetic field (a) and secular variation (b) on the outer boundary for
case 2. Grey scale represents absolute values, solid lines are positive, dotted lines are
negative.

112



(a)

EQ

30N

60N

30S

60S

0 60 120 180 240 300

(b)

EQ

30N

60N

30S

60S

0 60 120 180 240 300

Figure 5.4: Dynamo flow (a) and inverted flow (b) for case 2a with tangential magnetic
diffusion. Maximum velocity in (a) is 79.7, and velocity in (b) scales according to (a).
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excluding the lowest �Æ latitudes gives � � ����. Clearly, the flow recovery is adequate at

high latitudes where most of the intense flow structures are present in the dynamo flow; the

recovery is substantially degraded at low-latitudes due to strong radial magnetic diffusion

effects, the singularity of the tangential geostrophy, and methodological problems of my

inversion there.

Overall, the large-scale properties of the flow are well-recovered, both in magnitude

and in pattern. The quality of fit is better in terms of magnitude and comparable in terms

of pattern with respect to the quality of fits obtained by Rau et al. (2000). Most main flow

features in the dynamo flow are present in the inverted flow at the correct position and with

the correct direction of circulation.

5.5.2 Small-scale dynamos

I proceed to describe my results for more complex numerical dynamos. Figs. 5.5 and

5.6 show the radial magnetic field and secular variation of cases 3 and 4, respectively.

These cases are characterized by a larger Rayleigh number and a smaller Ekman number

than cases 1 and 2 (Table 5.1), resulting in more vigorous convection and stronger rota-

tional effects. In these dynamos the magnetic Reynolds number is larger and smaller-scale

magnetic and velocity fields are obtained. On the outer boundary the heat flux is imposed,

uniform in case 3 and with a heterogeneous pattern obtained from a lower mantle tomog-

raphy model (Masters et al., 1996; Olson and Christensen, 2002) in case 4. As in cases 1

and 2, the magnetic field is dominantly dipolar in cases 3 and 4, but is now of much smaller

spatial scale (Figs. 5.5 and 5.6). Therefore, I used a finer ���Æ� ���Æ grid for the inversions

of cases 3 and 4.

Figs. 5.7 and 5.8 compare the original and inverted velocities for cases 3 and 4, respec-

tively. The statistics of cases 3 and 4 is summarized in Table 5.3. As in cases 1 and 2,

including tangential magnetic diffusion improves the quality of the flow pattern - in case 3
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Figure 5.5: Radial magnetic field (a) and secular variation (b) on the outer boundary for
case 3. Grey scale represents absolute values, solid lines are positive, dotted lines are
negative.
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Figure 5.6: Radial magnetic field (a) and secular variation (b) on the outer boundary for
case 4. Grey scale represents absolute values, solid lines are positive, dotted lines are
negative.
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by ���� and in case 4 by ���� (see � values in Table 5.3). From Table 5.3 it is evident that

the qualities of the inversions of cases 3 and 4 are much lower than the quality of the inver-

sions of cases 1 and 2, due to the higher complexity of the dynamos expressed by the finer

resolution of the secular variation in cases 3 and 4. A small-scale magnetic field is accom-

panied by strong local magnetic diffusion effects, which are not well-represented by the

magnetic Reynolds number, because the shell thickness is an overestimated length-scale.

Some of the diffusive effects may be captured by including tangential magnetic diffusion,

but the radial diffusion cannot be modeled without knowledge of the variation of the mag-

netic field with depth. Therefore, the quality of smaller-scale secular variation inversions

is significantly lower.

Case k ��
�� ��"������"���� �"�� �"�

� � ��� # % $�� $���

3 0.1 no 1.58 0.97 0.207 0.244 -25.57 1.61 3.44
3f 0.1 no 2.48 1.49 0.197 0.216 -62.20 0.12 4.26
3 0.1 yes 1.53 0.99 0.234 0.275 -24.63 1.87 3.01
4 0.1 no 2.28 1.04 0.072 0.100 -40.67 1.64 3.62
4f 0.1 no 3.94 1.90 -0.014 -0.016 -115.39 2.08 4.20
4 0.1 yes 2.13 1.02 0.100 0.113 -35.98 1.82 3.23

Table 5.3: Statistics of cases 3 and 4. �"� is the inverted velocity, �"�� is the true dynamo
velocity. �� and � denote absolute value and maximum, respectively. �" denotes the areal-
average of �". % denotes filtered cases. � is the correlation coefficient defined in (5.15), ��� is
the same coefficient excluding the ��Æ latitude band around the equator, # is the pointwise
correlation defined in (5.16). $�� and $��� are the secular variation and divergence misfits
in %, respectively.

The problems of imaging small-scale flow structures are illustrated by the intense flow

structure in the inverted flow of case 3 in the equatorial region at about longitude ����

(Fig. 5.7b). There is no corresponding structure in the dynamo flow (Fig. 5.7a); however,

in the same location there is a significant secular variation structure (Fig. 5.5b). Because

the magnetic field there is weak (Fig. 5.5a), tangential magnetic diffusion is not cannot be

the major source of secular variation. The radial part of the magnetic diffusion, represented
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Figure 5.7: Dynamo flow (a) and inverted flow (b) for case 3 with tangential magnetic
diffusion. Maximum velocity in (a) is 879.14, and velocity in (b) scales according to (a).
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Figure 5.8: Dynamo flow (a) and inverted flow (b) for case 4 with tangential magnetic
diffusion. Maximum velocity in (a) is 753.26, and velocity in (b) scales according to (a).
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by the first term on the right hand side of (5.10), causes local rapid changes in the radial

magnetic field at this area, which results in a severe flow artifact.

Despite the problems of imaging small-scale dynamo flow, case 3 recovers several main

flow features. The most intense dynamo flow feature is an anti-cyclonic vortex centered at

about ����� ��	 
 (Fig. 5.7a). This structure is well-recovered in position and direction of

circulation in the inverted flow, and it is one of the most intense flow features (Fig. 5.7b).

More examples of successful flow recoveries include an intense cyclonic vortex centered

at about ������ ��>
 and equatorially-symmetric poleward jets at about longitude ���.

The quality of flow recovery in case 4 is even poorer than in case 3, probably because the

tomographic boundary conditions induce a more complex smaller-scale flow.

I tested the effects of magnetic field truncation on core flow inversions in cases 3f and

4f. I inverted the same magnetic secular variation of cases 3 and 4, but this time I used a

low-pass filter. The filter is a cosine function centered at spherical harmonic degree � � ��

with a width ; � �, so � � �� is unchanged, � � �� is moderately truncated, and � 	 �� is

completely removed. The inverted flow was compared with the dynamo flow filtered in the

same way. The statistics of the filtered cases is given in Table 5.3 (cases 3f and 4f). I find

that the filtered inversions degrade the quality of the flow recoveries. The same conclusion

was reached by Rau et al. (2000).

My small-scale dynamo inversions are less successful in terms of the correlation co-

efficient in comparison with similar cases inverted by Rau et al. (2000), because of the

flexibility of spectral methods in the choice of the taper parameter. This choice selects the

trade-off between misfits and flow-scale, and allows for large misfits that absorb magnetic

diffusion effects (Rau et al., 2000). These large misfits are useful when the true flow in

known, but typically would not be used in geomagnetic secular variation inversions. My

method does not apriori selects the flow-scale or the misfits.

Cases 3 and 4 demonstrate that complex flow at low Ekman number and high magnetic
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Reynolds number might be not well-resolved by core flow inversions, even when the mag-

netic field and secular variation is known at small spatial scale. Furthermore, the errors in

core flow models due to geomagnetic data truncation may be severe (Hulot et al., 1991).

The unmodeled local effects of radial magnetic diffusion are enhanced in small-scale nu-

merical dynamos with vigorous convection, especially in the equatorial region, resulting in

flow artifacts. Nevertheless, some main flow features are recovered.

5.6 Discussion

Several problems are associated with core flow inversions. First, the observed geomag-

netic data is truncated at spherical harmonic degree � �� to remove the effect of crustal

magnetization, and therefore the data does not contain the small-scale core field. Second,

most previous core flow models neglected magnetic diffusion due to the large magnetic

Reynolds number estimated in the core. However, magnetic Reynolds number based on

the outer core radius is may be misleading because the geomagnetic core field may change

on much smaller length-scales. Furthermore, frozen-flux tests based on local conservation

integrals show that in some regions of the core-mantle boundary, diffusion plays an impor-

tant role (Bloxham, 1989). Also, the expansion and intensification of reversed flux patches

on the core-mantle boundary, especially below the Southern Atlantic Ocean, suggest that

magnetic diffusion effects are significant at these regions (Gubbins, 1987; Bloxham et al.,

1989; Olson and Amit, 2005). Third, core flow inversions contain non-uniqueness; there is

some flow component that does not generate secular variation of its own (Backus, 1968).

Various physical assumptions have been used to further constrain the flow and to reduce

its non-uniqueness, including steady flow (Voorhies, 1986), pure toroidal flow (Whaler,

1980), and tangential geostrophy (LeMouël, 1984). These assumptions reduce but do not

remove non-uniqueness from the inverse problem. In pure toroidal core flow models the
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component parallel to �-contours is non-unique, whereas in tangential geostrophic models

the non-uniqueness is reduced to ambiguous patches that occupy about ��� of the core-

mantle boundary (Bloxham and Jackson, 1991). Therefore the non-uniqueness in tangential

geostrophy is more restricted than in pure toroidal flow (Backus and LeMouël, 1986), but

still the problem remains. Core flow models that assume steady flow are advantageous for

their simplicity and were found compatible with the gross secular variation, but cannot ac-

count for the observed changes in the length-of-day (Bloxham, 1992; Holme and Whaler,

2001).

The problems of data truncation and unmodeled magnetic diffusion are common to

my method and conventional spectral methods. The filtered cases have demonstrated that

truncation effects degrade the flow recovery, when compared with filtered flow. At lower

magnetic Reynolds number I have demonstrated that accounting for just a part of the dif-

fusion effects, the tangential part, improves significantly the quality of the flow recovery.

However, unmodeled effects of radial magnetic diffusion degrade the quality of the flow

recovery, especially at the equatorial region.

My method has several conceptual advantages over conventional spectral methods.

First, my method does not suffer from non-uniqueness (Amit and Olson, 2004); the he-

lical flow assumption resolves significant field-aligned flow that is in the null-space of the

tangential geostrophy or pure toroidal flow assumptions. Second, the trade-off between

flow-scale to data misfit in spectral methods leads to large misfits for best-fit recovered

flows (Rau et al. 2000), whereas in my method the magnitude of the flow can be “tuned”

without damaging the data misfit. Finally, I have demonstrated that including tangential

magnetic diffusion significantly improves the quality of flow recovery.

In summary, my inversion method recovers most of the main features of the flow, both in

position of flow structures and in direction of circulation. Choice of an appropriate � value

resolves the correct magnitude of flow without degrading the inversion misfits. Inclusion
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of magnetic diffusion effects in core flow inversion improves the quality of flow pattern.

A lack of accurate knowledge about toroidal-poloidal coupling at the top of the core and

unmodeled effects of radial diffusion result in some flow artifacts. However, the overall

flow pattern is well-recovered. Inversions of high-complexity small-scale secular variation

data yield poor core flow recoveries.

123



Chapter 6

Dynamo mechanisms for rapid magnetic

dipole moment changes

6.1 Introduction

Since the advent of geomagnetic intensity measurements, the geomagnetic dipole mo-

ment has decreased at an average rate of about 6 � per century. This is approximately 12

times faster than the dipole free decay rate in the core. Rapid dipole moment decrease is

significant because it indicates a decrease in the intensity of the geomanetic field, and a

sustained decline may indicate instability of the geodynamo. According to the paleomag-

netic record, for example, polarity reversals and excursions often begin with a large dipole

moment decrease. Linear extrapolation of the present-day decrease predicts that the dipole

moment would vanish in about 1650 years. The moment decrease is accompanied by an

increase in the intensity and area of reversed magnetic flux patches on the core-mantle

boundary, especially in the southern hemisphere.

The magnetic dipole moment vector is an intrinsic property of planetary magnetic

fields, and are generally inclined with respect to the planets’ spin axes. The geomagnetic
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dipole is now tilted about 10.5 degrees from the geographic pole. The North Geomagnetic

Pole changed very little between 1900 �����Æ		 and 1960 �����Æ		, then drifted rapidly

poleward to ����Æ	 in 2000.

The high-latitude normal magnetic flux lobes account for most of the positive contri-

butions to the dipole moment. Previous studies argued that the dipole moment decrease

is mostly due to the dynamics of the reversed magnetic flux patches, especially in the

Southern Atlantic (Bloxham and Gubbin, 1985; Gubbins, 1987; Bloxham et al., 1989).

Gubbins (1987) argued that the dipole moment decrease in 1945 is almost entirely due to

the intensification of the reversed flux patch below south of Madagascar and the poleward

motion of the reversed flux patch below Patagonia. Reversed flux intensification was mod-

eled as expulsion of toroidal magnetic field by fluid upwelling (Bloxham, 1986; Gubbins,

1987; Bloxham et al., 1989; Gubbins, 1996; Christensen and Olson, 2003). Bloxham et al.

(1989) argued that despite the overall validity of the frozen-flux approximation, in which

magnetic field diffusion is assumed negligible with respect to advection of magnetic field

by core flow (Roberts and Scott, 1965), time-dependency of magnetic flux integrals in the

Southern Atlantic provide strong evidence for diffusion.

Although previous studies have identified meridional advection and radial diffusion

as the main mechanisms of dipole moment decrease (e.g. Gubbins, 1987), their analysis

were different in several important respects. First, advective contributions were inferred

indirectly from magnetic flux integrals, rather then directly from the interaction between

geomagnetic field and core flow models. Second, contributions of normal polarity magnetic

flux to dipole moment changes were not considered. Third, the dipole decrease was studied

only at a certain year; the analysis at that time might not necessarily represent well the time-

dependent dipole moment dynamics. Fourth, the contribution of meridional diffusion was

not addressed. Finally, only the dipole moment strength has been analyzed; little attention

has been given to the mechanisms that control changes in the geomagnetic tilt.
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In this chapter I derive equations for the various mechanisms of magnetic dipole mo-

ment change on the core-mantle boundary. I identify and quantify these mechanisms in the

core over a period of 90 years, including contributions from normal and reversed magnetic

flux patches. I compute mechanisms of geomagnetic dipole moment decrease as well as

temporal changes in the geomagnetic tilt. I confirm my geomagnetic interpretation with an

analysis of rapid magnetic dipole moment decrease in a numerical dynamo.

The chapter is outlined as follows. In section 2 I review the theory for the rate of change

of the magnetic dipole moment vector (Moffatt, 1978; Davidson, 2001), and I expand this

theory to derive equations for the rate of change of its axial and equatorial components. I

present my results in section 3. The concept of my approach and the geophysical interpre-

tations are discussed in section 4.

6.2 Theory

Previous authors derived equations for the rate of change of the magnetic dipole mo-

ment vector on a spherical surface (Moffatt, 1970; Davidson, 2001). Here I expand this

derivation for the axial and equatorial components of the dipole moment in terms of the

magnetic and velocity fields just below the core-mantle boundary, and discuss the physical

meaning of the different terms.

6.2.1 The rate of change of the magnetic dipole moment vector

I begin by reviewing the derivation of Moffatt (1978) for the temporal rate of change of

the magnetic dipole moment vector. The dipole moment vector �� is generally defined as

�� �
�

�

�
�

�� � �+<( � (6.1)
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where ( is volume of the outer core, �� is position vector, and �+ is electric current density.

The dipole moment vector can also be defined in terms of the magnetic field �,

�� �


�)�

�
�

�<( � (6.2)

)� � �! � ���� 	�*� is permeability of free space. The temporal rate of change of the

dipole moment vector is therefore

<��

< 
�



�)�

�
�

� �

� 
<( � (6.3)

where  is time. Using Faraday’s law, (6.3) can be rewritten as
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where �� is electric field, �� is radial unit vector, the spherical surface increment is <> �

�� ��� �<�<�, � is the core’s radius, and ��� �� �	 are the spherical coordinates. The electric

field can be expressed in terms of the magnetic and velocity fields using Ohm’s law for a

moving conductor,

�� � ��"� � � ��� � � (6.5)

where �" is the velocity field and � is the magnetic diffusivity of the fluid. Substituting (6.5)

into (6.4) and assuming "��
�� � � gives the rate of change of the dipole moment vector

in terms of the magnetic and velocity fields just below the core-mantle boundary (Moffatt,

1970; Davidson, 2001):
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6.2.2 The rate of change of the axial dipole moment

I proceed to derive an expression for the temporal rate of change of the axial component

(aligned with the rotation axis) of the magnetic dipole moment. The axial magnetic dipole
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moment is defined
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The axial component of the first integrand on the right hand side of (6.6) can be written

�1 � �"� � "�� � �"� ��� �� � (6.8)

where �1 is the axial unit vector, and again I used "��
�� � �. The second integrand on the

right hand side of (6.6) can be rewritten as
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The axial component of (6.9) is then

�1 � ��� � ��� �		 �
��� �
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 � (6.10)

Substituting (6.7), (6.8) and (6.10) into the axial component of (6.6) yields the expression

for the rate of change of the axial dipole moment by three different contributions,
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The terms on the right hand side of (6.11) from left to right represent meridional advec-

tion, radial diffusion, and meridional diffusion mechanisms of axial dipole moment change,

respectively.

The axial dipole moment can be computed from its spherical harmonic representation,
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where � is the radius of the Earth, and ��� is the axial dipole Gauss coefficient. The left

hand side of (6.11) is then
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6.2.3 The rate of change of the equatorial dipole moment

Next I derive an expression for the temporal rate of change of the magnetic equatorial

dipole moment

�� �
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� ��� � �����<> � (6.14)

where the equatorial axis points where the equatorial plane intersects the time-dependent

longitude line of the magnetic pole ��� 	, and �� � ���� is the longitudinal distance from

the magnetic pole. The equatorial component of the first integrand on the right hand side

of (6.6) becomes

�� � �"� � "�� � ���� � �����"� � �����"		� � (6.15)

where �� is the radial cylindrical unit vector, and again I used "��
�� � �. The equatorial

component of the second integrand on the right hand side of (6.6) is
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Substituting (6.15) and (6.16) into the equatorial component of (6.6) and reorganizing

yields the expression for the rate of change of the equatorial dipole moment in terms of

three different contributions,
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The terms on the right hand side of (6.17) from left to right represent tangential advection,

radial diffusion, and tangential diffusion mechanisms of equatorial dipole moment change,

respectively.
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The equatorial dipole moment can be computed from its spherical harmonic represen-

tation,
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where ��� and ��� are the dipole Gauss coefficients in the equatorial plane. The left hand

side of (6.17) is then
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The magnetic dipole tilt �� is defined in terms of the axial and equatorial dipole moment

components,
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and its temporal rate of change is given by
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where $9 � <9�< . Equation (6.21) allows to compute the contributions of the three mech-

anisms to magnetic tilt change from the contributions of these mechanisms to the temporal

rates of change of the axial (6.11) and equatorial (6.17) dipole moment components.

6.2.4 The zonal drift of the dipole

Next I derive an equation for the zonal drift of the magnetic dipole, by deriving time-

evolution equations for the fixed cartesian dipole moment components �� and �!, which

lie in the equatorial plane along longitudes �Æ� and ��Æ�, respectively. The 9 and � dipole

moment components are defined by
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The 9 and � components of the first integrand on the right hand side of (6.6) are

�9 � �"� � ���� � ����"� � ����"		� (6.24)

�� � �"� � ���� � ����"� � ����"		� (6.25)

where again I used "��
�� � �. The 9 and �-components of the second integrand on the

right hand side of (6.6) are
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Substituting (6.24) and (6.26) into the 9-component of (6.6) and rearranging yields the

expression for the rate of change of ��,
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and similarly substituting (6.25) and (6.27) into the �-component of (6.6) yields the corre-

sponding expression for the rate of change of �!,
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The terms on the right hand side of (6.28) and (6.29) from left to right represent tangential

advection, radial diffusion, and tangential diffusion mechanisms of changes in the fixed

equatorial dipole moment components, respectively.
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The 9 and �-components of the dipole moment in terms of the Gauss coefficients are
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The left hand sides of (6.28) and (6.29) are respectively,
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The longitude of the dipole is defined in terms of �� and �!

�� �  �5���
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	 (6.34)

and the zonal drift of the dipole is given by
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Equation (6.35) allows to compute the contributions of the three mechanisms to the zonal

drift of the magnetic dipole from the contributions of these mechanisms to the temporal

rates of change of the 9-component (6.28) and �-component (6.29) of the dipole moment.

6.3 Results

6.3.1 Dipole moment change analysis using a geomagnetic field model

Here I analyze models of the geomagnetic field on the core-mantle boundary. All the

data prior to 2000 is from the core field model of Bloxham and Jackson (1992), and the

data for 2000 is from the �ersted satellite (Olsen et al., 2000). My goal here is to relate

the geomagnetic dipole moment decrease to the growth of reversed flux patches and the

changes in the geomagnetic tilt over the last century.
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Observations of geomagnetic dipole moment intensity

Fig. 6.1 shows the decrease of the geomagnetic dipole moment intensity over the last

century, compared to the theoretical free decay rate for a typical core magnetic diffusivity

value of � � � m�/sec. From Fig. 6.1 it is clear that the current decrease is significantly

more rapid than the expected decrease if the geodynamo ceased. This rapid decrease is

accompanied by expansion and intensification of reversed flux patches on the core-mantle

boundary. Fig. 6.2 shows the radial magnetic field on the core-mantle boundary in 1900

(a) and 2000 (b). In 1900, intense reversed flux patches appeared mostly below Patagonia,

whereas by 2000 these patches are also present below wide areas of the Southern Atlantic,

South Africa, and some polar regions in both hemispheres.

The geomagnetic dipole is very axisymmetric, i.e. the axial part constitutes most of

the vector intensity. To get an insight for the role of reversed flux patches in geomagnetic

dipole moment decrease, I investigate maps of the relative contributions to the axial dipole

moment, � ��� � (Fig. 6.3a), and to its rate of change (Fig. 6.3b), in a given year (I

chose 1985 as an example). Positive values in Fig. 6.3a represent positive contributions

to the negative dipole moment, i.e. local areas with reversed polarity. Similarly, positive

values in Fig. 6.3b represent increase in the negative dipole moment, i.e. local areas which

contribute to the decrease in dipole moment intensity. The main contributions to the axial

dipole moment originate in high-latitude normal flux lobes at both hemispheres; reversed

flux patches, mostly below Patagonia and South Africa, have opposite contributions with

respect to the current normal polarity (Fig. 6.3a). However, the relative contributions to the

changes in the axial dipole moment (Fig. 6.3b) seems balanced, though the imbalance in

this map is large and represents the rapid dipole moment decrease. I integrated numerically

the relative contributions of normal (Fig. 6.4a) and reversed (Fig. 6.4b) flux to the axial

dipole moment over the last century. Most of the axial dipole moment change originates
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Figure 6.1: Geomagnetic dipole moment intensity over the last century and a half (squares);
and theoretical free decay rate in the core assuming magnetic diffusivity of � � � m�/sec
(solid line).
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Figure 6.2: Radial magnetic field on the core-mantle boundary in 1900 (a) and 2000 (b).
The North Geomagnetic Pole is marked by a circle.
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in the southern hemisphere, where reversed flux intensifies and normal flux weakens. In

the northern hemisphere, temporal changes are small, and both normal and reversed flux

increase their contributions, resulting in cancellation of the overall change there.

Observations of geomagnetic tilt

Fig. 6.5 shows the latitude of the North Geomagnetic Dipole over the last century. In

contrast to the monotonic trend in the decrease of the dipole moment intensity (Fig. 6.1),

the geomagnetic tilt is nearly constant between 1900-1960, and then drifts poleward until

today. The recent poleward drift of the geomagnetic tilt indicates a rapid decrease of the

equatorial dipole moment strength.

Fig. 6.6 shows the contributions to the equatorial dipole moment, � ��� � ��� ��, in

1900 (a) and 2000 (b). The North Geomagnetic Pole (circled) is located below Northern

Canada, and has drifted poleward from about ����Æ	 in 1900 to ����Æ	 in 2000. The equa-

torial dipole (circled) is located below Indonesia, and has drifted westward from ����Æ�

in 1900 to �����Æ� in 2000 (an average rate of about ��� Æ/year). From hereafter I shall re-

fer to eastern/western hemispheres with respect to a dividing longitude ���� � ��� 	�!��,

where ��� 	 is the time-dependent longitude of the dipole. In the last century the divid-

ing longitude is at about ��Æ�. Generally, the equatorial dipole moment receives positive

contributions from the southeast and northwest quadrants, and negative contributions from

the northeast and southwest quadrants. From Fig. 6.6, significant differences in the con-

tributions to the equatorial dipole moment between 1900 and 2000 appear mostly below

southeast of Indonesia (increase), China (decrease), and North America (decrease). A map

of the temporal rate of change in the equatorial dipole moment in 1975 is given in Fig. 6.7.

Like the axial case (Fig. 6.3b), the imbalance is difficult to detect visually. Fig. 6.8 shows

results of numerical integrations of contributions to the equatorial dipole moment over the

last century, by flux and by eastern/western hemispheres. Fig. 6.8a indicates that most of
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Figure 6.3: Contributions to the geomagnetic axial dipole moment (a) and to its temporal
change (b) in 1985. The North Geomagnetic Pole is marked by a circle.
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Figure 6.4: Contributions to the geomagnetic axial dipole moment from normal (a) and
reversed (b) flux by hemispheres over the last century.
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Figure 6.5: Geomagnetic tilt over the last century.
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the equatorial dipole moment decrease originates in the western hemisphere. The southeast

quadrant has the largest (positive) contribution to the equatorial dipole moment, but the

increase in the southeast quadrant is canceled by the increase in the negative contribution

from the northeast quadrant (Fig. 6.8b). The decrease in the western hemisphere is due to

changes in both flux types (Figs. 6.8a and b).

6.3.2 Analysis of core flow model

The dipole moment equations indicate that temporal changes in the geomagnetic dipole

moment can be attributed to three mechanisms: (1) Tangential advection of magnetic flux

by core flow just below the core-mantle boundary; (2) radial diffusion of magnetic field

from the interior of the core; and (3) tangential diffusion of magnetic flux on the core-

mantle boundary. Here I identify and quantify these three mechanisms for the changes in

the geomagnetic intensity and tilt over a period of 90 years using the time-dependent core

flow model of Amit and Olson (2005). In addition I analyze an event of rapid magnetic

dipole moment decrease in a numerical dynamo model. I detect changes in the dipole

moment intensity by the axial component, and in the tilt by the equatorial component.

Mechanisms of geomagnetic dipole moment decrease

Fig. 6.9 shows the streamfunction solution for 1985 over the radial magnetic field on

the core-mantle boundary for the same year. The contributions to the axial dipole moment

rate of change are computed as follows: Total changes are calculated from the geomag-

netic data, meridional diffusion contributions are calculated from the geomagnetic data and

assuming core magnetic diffusivity of � � � m�/sec, meridional advection contributions

are calculated from the geomagnetic data and the core flow model, and radial diffusion

contributions are calculated as the residuals of the axial dipole moment equation (6.11).

The contributions for the changes in the axial dipole moment for 1985 in Am�/sec are:
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Figure 6.6: Contributions to the geomagnetic equatorial dipole moment in 1900 (a) 2000
(b). The North Geomagnetic Pole and the equatorial dipole axis are marked by circles.
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Figure 6.7: Contributions to the temporal change in the equatorial dipole moment in 1975.
The North Geomagnetic Pole and the equatorial dipole axis are marked by circles.

Total� ������, meridional advection� ������ ������	, radial diffusion� ������ ������	,

and meridional diffusion � ������ �����	. These numerical integrations indicate that

meridional advection and radial diffusion have comparable contributions to the axial dipole

moment decrease, whereas meridional diffusion is negligible.

To illustrate the action of these two dominant effects, I focus on two regions. Fig.

6.10 shows the full velocities over the radial magnetic field below the South Indian Ocean

(a) and south of Madagascar (b). In Fig. 6.10a, a normal flux patch coincides with an

equatorward jet, resulting in axial dipole moment decrease by meridional advection. The

local contributions for the change in the axial dipole moment below South Indian Ocean in

Am�/sec are: Total� ������, meridional advection� ����� ������	, radial diffusion�

������� �������	, and meridional diffusion � ����� �����	. In Fig. 6.10b, a reversed

flux patch coincides with a westward jet, therefore effects of meridional advection are

expected to be small. The contributions of reversed flux only for the change in the axial

dipole moment below south of Madagascar in Am�/sec are: Total� ������, meridional
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Figure 6.8: Unsigned (absolute) contributions to the equatorial dipole moment over the last
century, by eastern/western hemispheres (a), and by flux at each hemisphere (b).
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Figure 6.9: Streamlines of a model of fluid flow below the core-mantle boundary and the
radial magnetic field on the core-mantle boundary in 1985. The North Geomagnetic Pole
is marked by a circle.

advection� ����� ����	, radial diffusion� ������ �����	, and meridional diffusion

� ������ �����	.
I have repeated this analysis for the period 1895-1985 (Fig. 6.11). The main balance at

all times is between meridional advection and radial diffusion, whereas meridional diffu-

sion is always negligible. At the beginning of the studied period and between 1950-1985,

meridional advection and radial diffusion are comparable; between 1910-1945 meridional

advection is dominant.

Mechanisms of geomagnetic tilt changes

Next I perform the analysis for the equatorial dipole moment, to study the dynamics

of the geomagnetic tilt. Fig. 6.12 shows the streamfunction solution for 1975 plotted over

the radial magnetic field on the core-mantle boundary for the same year. The contribu-

tions to the equatorial dipole moment rate of change are computed in the same way as for
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Figure 6.10: Core flow model and the radial magnetic field below the South Indian Ocean
(a) and south of Madagascar (b).
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Figure 6.11: Contributions of meridional advection, radial diffusion, and meridional diffu-
sion to the decrease in the geomagnetic axial dipole moment, 1895-1985.

the axial component, this time using the equatorial dipole moment equation (6.17). The

contributions for the change in the equatorial dipole moment for 1975 in Am�/sec are:

Total� ������, tangential advection� �������� �����	, radial diffusion� �������
�����	, and tangential diffusion � ������� �����	. As in the axial case, advection and

radial diffusion are dominant in the equatorial dipole moment decrease, whereas tangential

diffusion is negligible.

Fig. 6.13 shows the relative contributions of the three mechanisms to the change in

the equatorial dipole moment for the period 1895-1985. Between 1895-1960 tangential

advection and radial diffusion counteract each other, resulting in very little change in the

equatorial dipole moment, and the geomagnetic tilt is almost constant (Fig. 6.5). However,

between 1965-1985 tangential advection and radial diffusion act in unison, resulting in the

decrease of the equatorial dipole moment, and the recent poleward drift of the dipole (Fig.

6.5).
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Figure 6.12: Streamlines of a model of fluid flow below the core-mantle boundary and the
radial magnetic field on the core-mantle boundary in 1975. The North Geomagnetic Pole
and the equatorial dipole are marked by circles.
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Mechanisms of magnetic dipole moment decrease in a numerical dynamo

I repeat my analysis of the time-evolution dipole moment equation for an event of rapid

axial magnetic dipole moment decrease in a numerical dynamo model. This particular nu-

merical dynamo models magnetic field generation by thermal convection in an electrically

conducting fluid in a spherical shell (Olson et al., 1999). Here I use rigid boundaries with

fixed temperatures, and the regions outside the fluid shell are perfect insulators. The con-

trol parameters of the simulation are given in Table 6.1. In order to analyze a dynamo

with Earth-like dipole moment dynamics, I chose a dominantly-dipolar numerical dynamo.

This dynamo does not exhibit polarity reversals, and the magnetic dipole tilt is very small.

Therefore this model is appropriate for analyzing the axial dipole moment change, but not

the equatorial part.

Symbol Number Ratio Value
�� Rayleigh Convecting/retarding forces 6.5E5
�� Ekman Viscous/Coriolis forces 4E-4
�� Prandtl Viscous/thermal diffusivities 1
�� Magnetic Prandtl Viscous/magnetic diffusivities 5

Table 6.1: Control parameters in the numerical dynamo.

It is important to emphasize that the calculation of the contributions to the axial dipole

moment change is more complete than the calculation in the geomagnetic case. First, radial

diffusion can be calculated directly because all magnetic field components and their radial

derivatives are known. Second, magnetic diffusivity is known a priori. Third, the depth in

which the calculation should be applied is not trivial.

Fig. 6.14 shows timeseries of the axial magnetic dipole moment (a) and its temporal

rate of change (b) from a numerical dynamo. The dashed vertical line indicates the time

of the rapid dipole decrease event that I focus on here. Although this dynamo does not

reverse, the dipole moment fluctuates significantly (Fig. 6.14a). The dimensionless time in
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Fig. 6.14a is related to dimensional time by 3" � �0���	����, where 0 is the outer core

thickness, �� � &�� is the magnetic Prandtl number, and & is the kinematic viscosity.

In Fig. 6.14b I converted to dimensional time assuming a core magnetic diffusivity of

� � � m�/sec. The numerical dynamo dipole moment decreases at a rate of about ����

per century, about � times slower than the current geomagnetic dipole moment decrease.

Fig. 6.14c shows low-pass filtered timeseries of the axial magnetic dipole moment and the

kinetic energy modes � �  and � � �. Changes in the axial magnetic dipole moment

are overall related to vascillations in flow structures between � �  and � � �.

Fig. 6.15 shows images of the dynamo near the outer boundary at the time of the dipole

decrease event. The radial magnetic field on the outer boundary is dominantly dipolar, with

earth-like intense high-latitude normal flux lobes (Fig. 6.15a). A pair of intense reversed

flux patches elongated meridionally is present at low-latitudes. I found that reversed flux

patches are present at times of strong dipole moment; when the dipole moment weakens,

the reversed flux patches disappear, and it is the weakening of the normal flux lobes that

accounts for most of the dipole moment decrease. The radial velocity below the outer

boundary is organized in coloumns (Fig. 6.15b). The Northern hemisphere reversed flux

patch coincides with a margin between upwelling and downwelling coloumns, whereas the

Southern hemisphere patch coincides with a downwelling. I expect reversed flux patches

to emerge by fluid upwelling and intensify by downwelling. High heat flux is mostly con-

centrated at equatorial regions (Fig. 6.15c). Fig. 6.16 shows zonal profiles at the same

time. The zonal velocity profile (Fig. 6.16a) inside the tangent cylinder is dominated by

polar upwelling, intense westward polar vortices, and downelling at the tangent cylinder

margin that concentrates the magnetic field there. Outside the tangent cylinder the zonal

flow is mostly westward and weaker, with eastward flow at high-latitudes. Similar core

flow features were found in analysis of geomagnetic field models, core flow inversions,

and numerical dynamos (Jault et al., 1988; Olson and Aurnou, 1999; Olson et al., 1999;
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Figure 6.14: Numerical dynamo timeseries of the axial magnetic dipole moment (a), its
temporal rate of change (b), and low-pass filtered axial magnetic dipole moment and kinetic
energy modes � �  and � � � (c). The dashed vertical line indicates the time of the
rapid magnetic dipole moment decrease event.
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Figure 6.15: Snapshots of the dynamo near the outer boundary at the time of the magnetic
dipole moment decrease event. Radial magnetic field on the outer boundary (a), radial
velocity below the outer boundary (b), and heat flux on the outer boundary (c).

Hulot et al., 2002; Amit and Olson, 2005; Aubert, 2005). The relations between axial mag-

netic dipole moment, meridional circulation, zonal electric currents, and magnetic field

are illustrated schematically in Fig. 6.16c. Initial dipolar magnetic field lines (right hand

side of Fig. 6.16c) are advected by upwellings in polar (Fig. 6.16a) and equatorial (Fig.

6.15c) regions, resulting in bending of magnetic field lines to produce reversed (westward)

zonal electric currents, which decrease the axial magnetic dipole moment (6.1). Note that

reversed magnetic flux patches on the outer boundary in the are actually associated with

positive electric currents.

I integrated numerically the contributions of meridional advection, radial diffusion, and

meridional diffusion to the axial magnetic dipole moment changes during the rapid de-

crease event. Here the contribution of radial diffusion is directly computed from knowledge

of all magnetic field components and their radial derivatives. Magnetic diffusivity is also

accurately known. The depth-dependent contributions are given in Fig. 6.17. Magnetic

diffusion effects are more pronounced in numerical dynamos because of the smaller-scale

magnetic field. Therefore, the contribution of meridional diffusion is larger here than in

the geomagnetic analysis (Fig. 6.11) by an order of magnitude. Nevertheless, the contribu-
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Figure 6.16: Zonal velocity (a) and magnetic field and electric current (b) profiles of the dy-
namo at the time of the magnetic dipole moment decrease event, and schematic illustration
(c).
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Figure 6.17: Relative contributions (in �) of meridional advection, radial diffusion, and
meridional diffusion to the decrease in the magnetic axial dipole moment in a numerical
dynamo.

tion of meridional diffusion is still secondary. The main balance, like in the geomagnetic

analysis, is between meridional advection and radial diffusion. On the outer boundary, ad-

vection is identically zero. Far from the boundary, meridional advection is dominant, but

the dipole moment equation that assumes zero radial velocity (near boundary approxima-

tion) loses its validity. At a depth of ����0 (about �� where �� is the thickness of the

viscous boundary layer) the total axial magnetic dipole moment change departs from a con-

stant value, suggesting that this depth represents well the top of the “free stream”. At that

depth, meridional advection and radial diffusion are comparable. I conclude that in the nu-

merical dynamo studied, the contribution of radial diffusion is either larger or comparable

to the contribution of meridional advection.
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6.4 Discussion

6.4.1 Concept

In this study, I make two important non-trivial statements. First, although most of the

geomagnetic secular variation is caused by advection, diffusive effects play an important

role in geomagnetic dipole moment changes. Second, although local magnetic diffusion

effects might contaminate core flow inversions and lead to flow artifacts, global dipole

diffusion cannot be mimicked by advection. Since these two arguments are crucial in my

approach, I will elaborate on them.

The magnetic Reynolds number in the core is estimated to be � ��� (e.g. Amit and

Olson, 2004), suggesting that magnetic diffusion is negligible with respect to advection

of magnetic field by core flow (Roberts and Scott, 1965). However, it is possible (even

probable) that a very large part of core flow does not modify the dipole moment. Such flow

types include (1) zonal flow - does not change the latitude of magnetic flux; (2) flow along

�-contours - does not advect magnetic field; (3) self-cancellation effects - flow structures

that partially increase and partially decrease the dipole moment, for example a vortex in-

teracting with a purely dipolar axisymmetric magnetic field. Zonal flow and field-aligned

flow are dominant flow features in the core (Olson et al., 1999). Self-cancellation effects

are evident in the balanced maps of the contribution to total changes in the dipole moment

(Figs. 6.3b and 6.7). I therefore argue that the secular variation is mostly advective-driven,

but dipole moment changes may be driven equally by advection and diffusion.

To address the question of whether a core flow model obtained by a frozen-flux in-

version method can be used to estimate a diffusive contribution to dipole moment change,

consider a pure axisymmetric dipolar magnetic field of magnitude �

�� �  �	 � � ��� � (6.36)
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that is uniformly diffused, i.e, after � time,

�� �  � �� 	 � ��� ,	� ��� �� (6.37)

where , � � for dipole decay and , � � for dipole increase. The secular variation in this

case is
��

� 
� �,�

� 
��� � � (6.38)

The only flows that can mimic uniform global decrease/increase in intensity are uniform

global upwelling/downwelling, but such flows are not physical because they do not con-

serve net divergence. I have verified in my core flow solutions that the net divergence is

practically zero, within the error of grid discretization (Amit and Olson, 2005). Therefore,

uniform diffusion of a dipole magnetic field cannot be represented by frozen-flux flow in

my method. It is possible that local diffusion effects may contaminate frozen-flux flow

locally, but magnetic secular variation consistent with global dipole diffusion cannot be

adequately satisfied by a flow model. Rau et al. (2000) found in core flow inversion tests

using numerical dynamos that diffusion effects are absorbed in the misfits of frozen-flux

methods.

Another way to examine the validity of my approach to estimate diffusive contributions

to dipole moment change by frozen-flux inverted core flow models is using inversions of

synthetic magnetic secular variation from numerical dynamos. As mentioned in chapter 5,

the flow solutions from these inversions can be compared with the true dynamo flows to

test the validity of the inversion assumptions and method. I have calculated the contribu-

tion of meridional advection to the axial dipole moment change by the inverted flow of case

1 chapter 5. I found that the change has the correct sign and recovers ����� and �����

of the advective change in the dynamo flow, without and with tangential magnetic diffu-

sion, respectively. This result verifies empirically that the frozen-flux inversion method can

identify well the advective contribution to dipole moment change, in a case where the true
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contribution is known, and both radial diffusion and meridional advection are significant.

I inferred radial diffusion in the geomagnetic analysis of the time-evolution dipole mo-

ment equations in an indirect way. The total changes were computed from geomagnetic

data, tangential diffusion contributions were computed from geomagnetic data and an as-

sumption for the core’s magnetic diffusivity, tangential advection contributions were com-

puted from the interaction of geomagnetic data and a core flow model, and radial diffusion

contributions were computed from the residual of the dipole moment equations. In the

analysis of axial dipole moment change in a numerical dynamo, all contributions are cal-

culated in the same way as in the geomagnetic analysis, apart from radial diffusion which

is computed directly from the knowledge of the full magnetic field vector and its radial

variations.

6.4.2 Geophysical interpretation

The persistent rapid geomagnetic dipole moment decrease over the last century is dom-

inated by meridional advection of magnetic flux by core flow just below the core-mantle

boundary and radial diffusion of magnetic flux from the deeper outer core. These changes

are not exclusive for reversed flux; for example, advective contributions to the dipole de-

crease may originate from poleward motion of reversed flux or equatorward motion of

normal flux. Analysis of a time-dependent geomagnetic field model on the core-mantle

boundary reveals that normal and reversed flux in the southern hemisphere had compara-

ble contributions to the dipole decrease over the last century. In the northern hemisphere,

overall changes are smaller, and normal flux is actually strengthening the dipole moment

with time. I demonstrated the action of meridional advection and radial diffusion mech-

anisms by focusing on two local areas. The northward jet below the South Indian Ocean

advects an intense normal magnetic flux patch equatorward. The reversed flux patch below

south of Madagascar coincides with zonal flow; the axial dipole moment decreases there
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due to expansion and intensification of reversed magnetic flux by radial diffusion. In both

examples the flow features are parts of the large anticyclonic vortex in the southern hemi-

sphere, a robust flow feature in most core flow models (Bloxham and Jackson, 1991; Hulot

et al., 2002; Amit and Olson, 2005). The results of the numerical integrations for the con-

tributions of the three mechanisms to the geomagnetic dipole moment decrease between

1895-1985 suggest that at some epochs meridional advection dominates over radial diffu-

sion, whereas at other epochs the two mechanisms are comparable. Since 1950, meridional

advection and radial diffusion had comparable contributions to the dipole decrease. The

mechanism of meridional advection has limited efficiency in modifying the dipole moment

(Moffatt, 1978); the recent balanced partitioning between meridional advection and radial

diffusion suggests that the current decrease will continue in the near future.

Analysis of a rapid magnetic dipole moment decrease event in a numerical dynamo

reinforces my findings from the geomagnetic analysis; although the secular variation is

dominated by advection, the dipole moment decrease recieves comparable contributions

from meridional advection and radial diffusion, whereas meridional diffusion plays a sec-

ondary role. Depending on the effective depth of the ”free stream” in numerical dynamos,

radial diffusion is either larger or comparable to meridional advection in their contribu-

tions to the dipole decrease. I also observed on a longer time-scale a correlation between

dipole moment changes to vacillations in flow structure. Numerical dynamos suggest that

reversed zonal electric currents in the fluid shell are induced by the interaction of equatorial

and polar upwellings with the axisymmetric dipole magnetic field.

The time-evolution of the geomagnetic tilt is not monotonic over the last century. Be-

tween 1900-1960, the geomagnetic tilt is nearly constant; however, between 1965-2000

the tilt drifts polewards rapidly. The equatorial dipole moment recieves its most significant

local contributions from below the Indian Ocean, where positive (normal) magnetic flux is

supplied by meridional advection of normal flux from higher latitudes toward the current
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location of the positive equatorial dipole. Over the last century, this region has actually

intensified the equatorial dipole moment. The decrease in the equatorial dipole moment

originates mostly from the region below North America, where negative (normal) flux is

advected polewards, away from the negative equatorial dipole. Analysis of the equatorial

dipole moment changes shows that the geomagnetic tilt dynamics is governed by tangen-

tial advection and radial diffusion. The balance between the two mechanisms of equatorial

dipole moment changes is quite different than the balance in the axial dipole moment anal-

ysis. Between 1895-1915, relatively small global effects of both tangential advection and

radial diffusion results in nearly constant tilt. Between 1920-1965, the two mechanisms

counteracted each other; tangential advection acted to increase the equatorial dipole mo-

ment, but radial diffusion denied this action. Between 1970-1985, both mechanisms have

acted in unison to decrease the equatorial dipole moment, resulting in the recent poleward

drift of the geomagnetic tilt.
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Chapter 7

Conclusions

I introduced a new method to invert geomagnetic secular variation data for the fluid

flow at the top of the liquid outer core just below the core-mantle boundary. The main

concepts behind this method are:

� The tangential divergence of the flow is modeled by a superposition of a previously-

used tangential geostrophy assumption and a new helical flow assumption, in which

the tangential divergence is correlated with the radial vorticity.

� The helical flow assumption removes non-uniqueness from the inverse problem.

� The inversion does not rely on a priori assumptions about the scale of the flow; in-

stead a converged numerical solution is obtained by streamfunction diffusion from

the helical flow assumption.

� A numerical solution is obtained using a local finite-difference method on a grid.

I applied the inversion method to the historical geomagnetic secular variation data

1895-1985. The resulting core flow model was decomposed to time-average and time-

dependent parts. Time-average core flow was interpreted as thermal wind originating from
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two sources: Convection in the core assuming an homogeneous core-mantle boundary, and

mantle control by heterogeneous core-mantle boundary. Time-dependent core flow was

interpreted in terms of angular momentum exchange between the core and the mantle. My

main conclusions are:

� Common features in most core flow snapshots include a large anticyclonic vortex

below the Southern Atlantic, an anticyclonic vortex below North America, a strong

westward jet below mid-latitudes of the Southern Atlantic, and intense westward

polar vortices (especially below the North Pole).

� The time-average core flow includes the common flow features that appear in the

individual snapshots.

� The zonal part of the time-average core flow may be explained by a thermal wind

model. The non-zonal core flow and the thermal wind model consistent with the

density heterogeneity at the lower mantle do not correlate well.

� Time-average westward polar vortices and eastward zonal flow at high latitudes out-

side the tangent cylinder are driven by the core’s own dynamics.

� Equatorial asymmetry in the time-average zonal core flow, i.e. the strong westward

drift in the Southern hemisphere as opposed to the weak zonal flow in the Northern

hemisphere, seems to be driven by the lateral heterogeneity of the lower mantle.

� Time-dependent core flow is in agreement with the observed length of day variations.

� A torsional oscillations model fits the time-dependent core flow with dominant peri-

ods of �� and �� years.

I tested my inversion method using synthetic magnetic secular variation data from nu-

merical dynamo models that are characterized by Earth-like magnetic field morphology.
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The conclusions of these tests are:

� Most main flow features are well recovered, in terms of magnitude, location, and

direction of circulation.

� Including tangential magnetic diffusion in the inversions improves significantly the

quality of flow recovery. Effects of radial magnetic diffusion cannot be modeled and

might cause severe flow artifacts.

� The magnitude of the inverted flow depends on the value of the model parameter �;

data misfits are not degraded by the choice of this parameter.

� Low-pass filtered secular variation data degrade the flow recovery, suggesting that

effects of data truncation might be problematic in geomagnetic secular variation in-

versions.

� The quality of the inversions degrades substantially for more complex dynamos char-

acterized by a lower Ekman number.

I used the time-evolution equation for the magnetic dipole moment vector to derive

time-evolution equations for the magnetic dipole moment components. These equations

were then applied to study rapid changes in the geomagnetic dipole moment over the last

century. My main conclusions are:

� The dominant mechanisms of dipole moment changes are tangential advection and

radial diffusion, whereas tangential diffusion plays a secondary role.

� The rapid decrease in the geomagnetic dipole moment intensity is due to compara-

ble contributions of meridional advection and radial diffusion. Similar conclusion

was obtained in an event of rapid magnetic dipole moment decrease in a numerical

dynamo.
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� Unlike the dipole moment strength, directional changes in the dipole are not mono-

tonic, and my analysis shows why. Between 1895-1965 tangential advection and

radial diffusion counteracted each other, and the geomagnetic tilt was almost con-

stant. Toward the end of the century tangential advection and radial diffusion have

worked in unison to decrease the equatorial dipole moment, resulting in the poleward

drift of the dipole.
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Chapter 8

Future work

8.1 Inversions of paleomagnetic secular variation data

In this thesis, I introduced a new inversion method to image core flow from magnetic

secular variation data (chapter 3). I applied this method for modern satellite-based (chapter

3) and historical observatories-based (chapter 4) data. In recent years, several studies have

extended (backwards in time) and improved paleomagnetic field models (Hongre et al.,

1998; Constable et al., 2000; Korte and Constable, 2003; Korte and Constable, 2005).

However, no published study has inverted paleomagnetic secular variation data for paleo-

core flow models.

I plan to apply my inversion method to construct models of core flow over the last

several millenia. Hulot et al. (1994) performed a statistical analysis to the paleomagnetic

field and resolved the dominant time-scales of the field. I plan to apply similar statistical

analysis to the inverted millennial time-scale flow. More specifically, this study should

address the following questions:

� Does paleomagnetic time-average core flow contain features that appear in flow snap-

shots over the studied period?
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� Is the westward drift persistent in millenial time-scale?

� What are the typical time-scales of the flow?

� What part of millennial time-scale dipole moment changes, intensity and dipole drift,

can be explained by advection, and how important is magnetic diffusion on long

time-scales?

8.2 Core-mantle interaction

I examined the hypothesis that the mantle controls a portion of the core flow (chapter

4). I used lower-mantle tomography data and a thermal wind model to infer core flow,

and I compared this mantle-driven flow with my geomagnetic time-average core flow. This

analysis contains several crucial choices: The type of correlation between seismic velocity

anomalies to lower mantle density anomalies, and the type of core-mantle coupling (ther-

mal or chemical). I assumed a simple linear thermal core-mantle coupling. A recent study

argues that this relationship is more complex, and most of the buoyancy in the lower mantle

is actually chemical (Trampert et al., 2004).

I plan to examine various relationships between seismic velocity anomalies and density

anomalies in the mantle, and various core-mantle coupling scenarios, to derive various core

density anomalies models. These models may be used

� to construct tomographic boundary conditions for numerical dynamos, and to test

mantle control on core flow in numerical dynamos.

� to calculate mantle-driven thermal wind (as in chapter 4).

In both cases, results of mantle-driven core flow models may be compared with geomag-

netic time-average core flow.
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The thermal wind equation developed in chapter 4 relied on the assumption that the

radial shear is proportional to the flow itself (Lloyd and Gubbins, 1990; Jackson and Blox-

ham, 1991). I plan to examine the validity of this assumption in numerical dynamos over a

wide range of control parameters. I intend to search for a scaling law for this proportional-

ity as a function of the dynamo control parameters, and I plan to attempt to extrapolate this

scaling law to Earth-like values.

8.3 Inversion test

I used synthetic magnetic secular variation data from numerical dynamos to test my

core flow inversion method (chapter 5). Though the main results were encouraging, the

inversions succeeded less in the recovery as more complex flows were tested.

I plan to extend this project by examining more aspects of the inversion method:

� I plan to invert for several more dynamo flows with various control parameters to

examine the quality of the recovered flow (see statistical measures in chapter 5) as a

function of the complexity of the flow (represented by the control parameters of the

numerical dynamos).

� I plan to produce “non-diffusive” synthetic secular variation data, i.e. secular varia-

tion with diffusive contributions removed, to examine the true quality of a frozen-flux

inversion method.
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