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We propose two new analytical expressions to fit the Mauersberger–Lowes geomagnetic field spectrum 
at the core–mantle boundary. These can be used to estimate the radius of the outer liquid core where the 
geodynamo operates, or more generally the radius of the planetary dynamo regions. We show that two 
sub-families of the geomagnetic field are independent of spherical harmonics degree n at the core–mantle 
boundary and exhibit flat spectra. The first is the non-zonal field, i.e., for spherical harmonics order m
different from zero. The second is the quadrupole family, i.e., n + m even. The flatness of their spectra is 
motivated by the nearly axisymmetric time-average paleomagnetic field (for the non-zonal field) and the 
dominance of rotational effects in core dynamics (for the quadrupole family). We test our two expressions 
with two approaches using the reference case of the Earth. First we estimate at the seismic core radius 
the agreement between the actual spectrum and the theoretical one. Second we estimate the magnetic 
core radius, where the spectrum flattens. We show that both sub-families offer a better agreement with 
the actual spectrum compared with previously proposed analytical expressions, and predict a magnetic 
core radius within less than 10 km of the Earth’s seismic core radius. These new expressions supersede 
previous ones to infer the core radius from geomagnetic field information because the low degree terms 
are not ignored. Our formalism is then applied to infer the radius of the dynamo regions on Jupiter, 
Saturn, Uranus and Neptune. The axisymmetric nature of the magnetic field of Saturn prevents the use of 
the non-zonal expression. For the three other planets both expressions converge and offer independent 
constraints on the internal structure of these planets. These non-zonal and quadrupole family expressions 
may be implemented to extrapolate the geomagnetic field spectrum beyond observable degrees, or to 
further regularize magnetic field models constructed from modern or historical observations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Inferring the internal structure of a planet is a major chal-
lenge in planetary exploration. This information is generally de-
duced from moment of inertia and seismic measurements (e.g., 
Mocquet et al., 2011), but seismic data are usually either not avail-
able or too sparse on planets other than the Earth. Moment of 
inertia alone does not allow to decipher density and thickness vari-
ations, and additional constraints or assumptions such as on the 
composition of the planetary bodies are necessary (e.g., Guillot, 
2005). Inferred temperature and pressure radial distributions may 
be combined with experiments and equations of state to estimate 
the depth at which phase transitions occur (Fortney, 2007). Heat 

* Corresponding author.
E-mail address: benoit.langlais@univ-nantes.fr (B. Langlais).
http://dx.doi.org/10.1016/j.epsl.2014.05.013
0012-821X/© 2014 Elsevier B.V. All rights reserved.
flow measurements, surface or atmosphere composition, and sur-
face features also bring additional constraints (Hagermann, 2005;
Zuber et al., 2010; Baraffe et al., 2014). The mass and radius of an 
exoplanet can eventually be combined to infer its water content or 
its class (Grasset et al., 2009).

Alternatively, planetary internal structure may be constrained 
by magnetic field measurements. Electromagnetic studies can in-
deed provide crucial information about the electrical conductiv-
ity of internal layers (Verhoeven et al., 2009; Civet and Tarits, 
2013). Observed delay times of geomagnetic jerks may also con-
strain the electrical conductivity profile of the mantle (Pinheiro 
and Jackson, 2008). The size of the liquid core, or more generally 
of the electrically conductive and convecting layer where the mag-
netic field is generated, can also be inferred from measurements 
of the magnetic field and of its secular variation (Hide, 1978). 
This information is particularly useful when other constraints fail 
to unambiguously determine the internal structure of these bodies.
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Lowes (1966) defined the so-called spatial power spectrum of 
the (geo)magnetic field. This quantity represents the energy of the 
magnetic field for a given spherical harmonics (SH) degree and is 
also known as the Lowes–Mauesberger spectrum (Lowes, 2007). 
In the case of the Earth, and assuming that the mantle is source-
free, one can downward continue the magnetic field as predicted 
from SH models down to the core–mantle boundary (CMB). It has 
been observed that the magnetic power spectrum has two distinct 
parts (Lowes, 1974; Langel and Estes, 1982), separated by a knee 
around SH degree n = 15. For larger degrees the spectrum is al-
most flat at the Earth’s surface. This has been interpreted as the 
spectrum being associated with the so-called ‘white noise’ hypoth-
esis (Backus et al., 1996). For lower degrees, the spectrum becomes 
almost flat at the CMB. This well-known property provides an al-
ternative way to estimate the size of the dynamo region, i.e., the 
depth at which the magnetic power spectrum becomes flat.

Based on paleomagnetic field analysis, Constable and Parker
(1988) concluded that excluding the axial dipole and axial quadru-
pole, the remaining spectrum is flat at the CMB. This may be re-
garded as a statistical sample from a single giant Gaussian process 
(GGP). The GGP formalism was generalized by Hulot and Le Mouel
(1994). Time-average paleomagnetic field and paleo secular varia-
tion modeling strategies rely on a GGP description (for a review 
see Hulot et al., 2010). In addition, it was shown that GGP de-
scribes well the field produced by numerical dynamo models (e.g., 
Bouligand et al., 2005). Following this rationale, it is therefore ex-
pected that some part of the spectrum will be flat immediately 
above the magnetic field sources (Backus et al., 1996).

Lowes (1974) used an empirical power law to describe the geo-
magnetic spatial power spectrum between n = 3 and 8 of the Inter-
national Geomagnetic Reference Field (IGRF) 1965 (Zmuda, 1971), 
and found a core radius equal to 2995 km, to be compared to the 
commonly adopted seismic value of 3481.7 km (Dziewonski and 
Anderson, 1981; Kennett et al., 1995, hereafter denoted the seis-
mic radius of the CMB). He attributed this low value to both the 
inaccuracy of the field model and to the severe model truncation. 
Using a field model based on MAGSAT measurements, Langel and 
Estes (1982) found a core radius of 3311 km for n = 2–12. A more 
elaborated SH model led to a depth of 80 km below the CMB, again 
omitting the n = 1 term (Cain et al., 1989).

A second expression is the so-called McLeod’s rule, referring to 
the work of McLeod (1996). This approach is based on statistical 
considerations relating the spectrum of the magnetic field to that 
of the secular variation. Using this approach, Voorhies et al. (2002)
estimated the radius of the outer core to be 30 or 70 km above the 
seismic one considering degree terms n = 1–12 or 1–13, respec-
tively. Core radius estimates using McLeod’s rule are even closer 
to the seismic radius when omitting degrees 1 and 2 (Voorhies, 
2004).

These two different expressions offer two slightly different esti-
mates of the Earth’s liquid core radius. However none of these ex-
pressions can satisfactorily predict it. More importantly the ques-
tion remains which degrees deviate from the flat spectrum hy-
pothesis, or from the chosen analytical expression. In this study 
we suggest that the flat spectrum hypothesis applies for spe-
cific sub-families of the (geo)magnetic power spectrum, and pro-
pose two new analytical expressions of the (geo)magnetic spatial 
power spectrum. These two sub-families are the non-zonal and the 
quadrupole family.

In the following we present in Section 2 the existing and new 
analytical expressions of the (geo)magnetic spatial power spec-
trum. In Section 3 we describe the statistical tools used to test and 
compare the analytical expressions. Results of those tests on geo-
magnetic field models are given in Section 4, including dependen-
cies on the truncation degree, the geomagnetic field model epoch 
and geomagnetic field model level of parametrization. We apply 
our new analytical expressions to the gas giant planets in Section 5
and conclude in Section 6.

2. Analytical expressions of the geomagnetic spatial power 
spectrum and core radius estimate

Outside a magnetic source region, the magnetic field vector �B
can be written as the gradient of a scalar potential V which satis-
fies Laplace’s equation:

∇2 V = 0 (1)

Gauss (1839) showed that the potential associated with internal 
sources can be written as a SH expansion:

V int(r, θ,φ) = a
∞∑

n=1

n∑
m=0

(
a

r

)n+1

× (
gm

n cosmφ + hm
n sin mφ

)
Pm

n (cos θ) (2)

where (r, θ, φ) are the spherical coordinates radius, colatitude and 
longitude, gm

n and hm
n are the time-dependent internal field Gauss 

coefficients (in nanoTesla, nT) of degree n and order m, a is Earth’s 
mean spherical radius and Pm

n are the Schmidt semi-normalized 
associated Legendre functions. We note that these expressions are 
valid for other planets, by simply substituting the appropriate plan-
etary radius for a.

The potential V int accounts for the magnetic sources located 
below the measurement altitude. In the case of magnetic measure-
ments acquired at or above the surface of the Earth, this potential 
encompasses the internally generated geodynamo field, remanent 
field, induction effects in the lithosphere and in the mantle. This 
expansion is infinite, but it is usually truncated to some finite de-
gree Nint (Langel, 1987).

At the Earth’s surface, the mean square magnetic field of de-
gree n, denoted here Rn(a), is expressed as (Lowes, 1966):

Rn(a) = (n + 1)

n∑
m=0

((
gm

n

)2 + (
hm

n

)2)
(3)

The quantity Rn is the geomagnetic spatial power spectrum. It can 
be upward or downward continued, as long as Eq. (1) is respected. 
One can write Rn(r):

Rn
(
r, r ≥ rs

c

) = Rn(a)

(
a

r

)2n+4

(4)

where rs
c is the seismic radius of the outer core (presumably that 

of the dynamo region). The behavior of the geomagnetic power 
spectrum at the Earth’s CMB is shown in Fig. 1(a). At the CMB, the 
spectrum of the core field remains more or less flat. In this study 
we are interested by the core portion of the geomagnetic spatial 
power spectrum only.

The average squared magnetic field over a spherical surface of 
radius r is equal to the sum (over n) of the individual terms of 
Eq. (4):

〈∣∣�B(r)
∣∣2〉 =

Nmax∑
n=1

Rn(a)

(
a

r

)2n+4

(5)

where Nmax is the maximum SH degree considered. Because the 
magnetic field is a finite quantity, as long as the magnetic sources 
lie below this spherical surface, and assuming that the trend of the 
spectrum is unchanged beyond Nmax , all individual terms Rn(a) are 
bounded (e.g., Backus et al., 1996), such as

Rn(r) ≤ C

(
r
)2n+4

(6)

a
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Fig. 1. Geomagnetic spatial power spectra of the CHAOS4α field model at epoch 
2005 at the CMB. (a) Full spectrum (symbols) with power law (thick dotted line) 
and McLeod’s rule fits (thick dashed line); (b) non-zonal (open symbols) and 
zonal (gray closed symbols) spectra with non-zonal expression fit (thick line); (c) 
quadrupole (open symbols) and dipole (gray closed symbols) family spectra with 
quadrupole family expression fit (thick line). All graphs are plotted with the same 
scale.

where C is a given constant. Their sum (Eq. (5)) is bounded too. 
Given a theoretical model for Rn(r) and a geomagnetic core field 
model with sufficient accuracy for Rn(a), it is thus possible to es-
timate the maximum distance to the magnetic sources by looking 
for the smallest value of r at which the series Rn(r) remains a 
decreasing function, or even becomes flat and independent of n. 
There is of course some n at which a flat spectrum will not be 
valid anymore, as there is some finite magnetic energy. Any extrap-
olation to high degree is limited by the magnetic dissipation scale, 
from which the spectrum is expected to rapidly decay. The spher-
ical harmonic degree corresponding to the magnetic dissipation 
scale is estimated to be about 150 (Christensen and Tilgner, 2004;
Buffett and Christensen, 2007; Finlay and Amit, 2011). This is much 
larger than the typical truncation degree of core field models and 
will be ignored in the following.

2.1. Previously proposed expressions: power law and McLeod’s rule

The shape of the spectrum associated with the core field is em-
pirically approximated by a power law. This was first introduced 
by Lowes (1974), such as

R pl
n (r) = A1 · Bn

1 (7)

The superscript pl stands for the power law expression, and 
A1 and B1 denote empirically determined constants (in the fol-
lowing, Ai , Bi and Ci denote constants and their ln). This ex-
pression was used in different forms by several authors (e.g., 
Langel and Estes, 1982; Cain et al., 1989; Roberts et al., 2003;
Buffett and Christensen, 2007). Taking the logarithm of Eq. (7),

ln R pl
n (r) = A1 + n · B1 (8)

the ‘magnetic’ radius rm
c is found by equating ln R pl

n (rm
c ) to a con-

stant. We note that this quantity may be different from the seismic 
value of the core radius rs

c .
McLeod (1996) introduced a different expression to explain 

the geomagnetic spectrum. He proposed that the magnetic field 
sources can be statistically represented by horizontal magnetic 
dipoles (or magnetic monopoles) located at the base of each field 
line; he further suggested that the secular variation may be ex-
plained by horizontal magnetic dipoles, whose directions depend 
on the fluid flow. He finally related the spatial power spectrum 
of this secular variation to that of the main magnetic field (see 
Eqs. (12) to (20) of McLeod, 1996). Voorhies et al. (2002) general-
ized the so-called McLeod’s rule to become

Rmc
n (r) = K

n + 1/2

n(n + 1)

(
r

a

)2n+4

(9)

where K is empirically determined. At the CMB, using some simple 
algebra and applying ln on both sides, this can be rewritten as:

ln

(
n(n + 1)Rmc

n (rs
c)

n + 1/2

)
= A2 + n · B2 (10)

The linear regression of this equation leads to the estimate of rm
c

by looking for B2 = 0, i.e., when ln(n(n + 1)Rmc
n (rm

c )/(n + 1/2)) is 
constant and independent of n. Note that the expression Rmc

n (rm
c )

is not constant.

2.2. New analytical expressions: non-zonal and quadrupole family

We propose two alternative expressions motivated by the be-
havior of geomagnetic field models and supported by physical 
arguments. The first one is motivated by time-averaged paleomag-
netic field models indicate that the magnetic field is mostly ax-
isymmetric (Kono et al., 2000), and that non-zonal terms are weak 
and tend to average out. The non-zonal field can thus be seen as 
random at a given time, and when converted into SH, its spectrum 
has a null slope. We therefore propose that the non-zonal mag-
netic field spectrum Rnz

n (i.e., terms with m �= 0):

Rnz
n (r) =

(
a

r

)2n+4

(n + 1)

n∑
m=1

((
gm

n

)2 + (
hm

n

)2)
(11)

can be assumed to be independent of n, with:

Rnz
n

(
rm

c

) = C3 (12)

At the seismic core radius a more generic linear relation is writ-
ten:

Rnz
n

(
rs

c

) = A3 + n · B3 (13)

The second expression is based on estimates of the magnitude 
of the Coriolis force with respect to the viscous and inertial forces, 
which suggest that the dynamics within Earth’s outer core is 
strongly dominated by rotational effects (e.g., Olson, 2007). In the 
limit of rapidly rotating fluids the flow is expected to be organized 
in axial columns symmetric about the equator (Busse, 1970; Taylor, 
1971; Jault, 2008). A columnar cyclone associated with CMB down-
wellings is expected to concentrate a pair of field structures of op-
posite polarities at the same longitude in opposite latitudes, thus 



350 B. Langlais et al. / Earth and Planetary Science Letters 401 (2014) 347–358
contributing to an anti-symmetric field (for schematic illustrations 
see Olson et al., 1999; Aubert et al., 2008). It is therefore likely that 
a symmetric core flow will induce an anti-symmetric magnetic 
field on the CMB. Such field is also known as the dipole family one. 
Decomposition to dipole and quadrupole families (Roberts, 1971;
Gubbins and Zhang, 1993) was previously invoked to explain vari-
ous dynamo processes, e.g., geomagnetic dipole decrease (Amit and 
Olson, 2010), geomagnetic reversals (Coe and Glatzmaier, 2006)
and solar magnetic reversals (DeRosa et al., 2012).

In the following we propose that the action of the Coriolis force 
on core dynamics is responsible for the dominantly anti-symmetric 
field, and that the remaining symmetric field constitutes a devi-
ation and can be seen as random. This motivates examining the 
quadrupole family spectrum Rqf

n (i.e., n + m even) following:

Rqf
n (r) =

(
a

r

)2n+4

(n + 1)

n∑
m=0, n+m even

((
gm

n

)2 + (
hm

n

)2)
(14)

We further suggest that this spectrum has a null slope imme-
diately above the dynamo, leading to:

Rqf
n

(
rm

c

) = C4 (15)

At the seismic core radius a form similar to Eq. (13) leads to:

Rqf
n

(
rs

c

) = A4 + n · B4 (16)

The spectra associated with these two new sub-families are 
shown in Fig. 1(b) and (c), together with their zonal and dipole 
family counterparts, respectively. As expected the non-zonal and 
the quadrupole family spectra indeed appear to be more or less 
constant with an almost null slope. Both the zonal and dipole 
family spectra decrease relatively fast with increasing n, respect-
ing Eq. (6).

3. Statistical tests of the expressions

The two new expressions are tested and compared to the two 
previously proposed ones. It is necessary to define some statistical 
criteria to evaluate their pertinence. Two kinds of tests are per-
formed. First we estimate the misfit at the seismic CMB between 
the actual values of the geomagnetic spatial power spectrum and 
the predicted ones. Second we estimate how accurately the an-
alytical expressions predict the magnetic core radius. These two 
statistical measures are finally combined into a quality factor.

The agreement between each analytical expression for the ge-
omagnetic spatial power spectrum and the downward continued 
one at the CMB is evaluated by their normalized root mean square 
difference:

σs =
√√√√(

1

Nmax − Nmin

∑Nmax
n=Nmin

[Robs
n (rs

c) − Rmod
n (rs

c)]2

∑Nmax
n=Nmin

[Robs
n (rs

c)]2

)
(17)

where Rmod
n refers to one of the four expressions (Eqs. (8), (10),

(12) and (15)) and Robs
n refers to the observed full, non-zonal, or 

quadrupole family spectra. The dependence on the minimum and 
maximum SH degrees Nmin and Nmax is also considered. The misfit 
is normalized by 

∑Nmax
n=Nmin

[Robs
n (rs

c)]2 to allow proper comparison 
among the four expressions.

The second test considers the magnetic estimate of the depth to 
the magnetic sources, using Eqs. (7), (9), (13) and (16). The error 
is expressed in a relative way:

σm = rs
c − rm

c
s (18)
rc
This quantity may thus be negative or positive, although we 
note that overestimating the core radius may be seen as less erro-
neous than underestimating it from a physical point of view (it 
is indeed possible to downward continue the geomagnetic field 
power spectrum down to the CMB, but not below it).

Both the misfit at the CMB and the magnetic estimate of the 
core radius are important in order to assess the adequacy of the 
existing and proposed expressions. We therefore define an empiri-
cal combined quality factor,

σQ = 1

2
σ ∗

s + 1

2

∣∣σ ∗
m

∣∣ (19)

We choose to normalize σs and σm because they can differ by 
several orders of magnitude. Normalization values are set so that 
they are equal to 1 for model CHAOS4α at epoch 2005 (see below) 
with Nmax = 8 (normalization factors are 0.19793 and 12.25614, 
respectively). In addition the absolute value for σ ∗

m is considered 
because a large negative σ ∗

m could artificially balance a large σ ∗
s

value, resulting in an erroneously low σQ .

4. Application to the Earth’s magnetic field

The tests are applied to four geomagnetic field models. Their 
main characteristics are given in Appendix A. These models rep-
resent different modeling strategies, datasets and validity epochs. 
We test the two new expressions and compare them to the exist-
ing ones. We focus on the sensitivity to truncation degree, model 
choice and model epoch.

4.1. Dependence on the maximum truncation degree

We start by applying the four expressions to model CHAOS4α
at epoch 2005. We show in Fig. 2(a)–(c) the evolution of σm , 
σs and σQ for Nmax varying between 6 and 14 (Nmin = 1). The 
two new expressions offer better results for both the core radius 
and the misfit at the CMB. The non-zonal and quadrupole fam-
ily expressions are associated with a minimum σQ for Nmax = 13
or 14. Specifically, the results for Nmax = 13 are given in Table 1. 
We also determine the accuracy of the estimated dynamo radius 
(Appendix B). The magnetic estimate of the core radius using 
the non-zonal and quadrupole family expressions is 3486.6 and 
3496.6 km, respectively. This decreases the error on the core ra-
dius by one order of magnitude. The misfit at the seismic CMB 
is also slightly better. Dependence on Nmin is also considered in 
Appendix C. In the following we set Nmin and Nmax to 1 and 13, 
respectively, unless specified.

4.2. Dependence on the field model

Next we apply the four expressions to the four different field 
models. These models do not cover the same time periods so we 
examine different epochs: 2005 for CHAOS4α, 2000 for CM4 and 
IGRF, and 1980 for gufm1. We present the results in Fig. 3.

As for the truncation degree test, the two new expressions of-
fer significantly better results than the power law and McLeod’s 
rule for all models except for gufm1 (see below). The three more 
recent models present similar results, with the two non-zonal and 
quadrupole family expressions offering both a better estimate of 
the core radius and a better fit to the spectrum. Core radius es-
timates associated with CHAOS4α model can also be found in 
Table 1. The CM4 and IGRF field models lead to core radius es-
timate errors ranging between −4.6 and 17.1 km using the newly 
proposed expressions. For gufm1 the best results are obtained by 
McLeod’s rule. We further investigate this field model, and in par-
ticular the time-dependence issue, in the following subsection.
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Table 1
Relative error on core radius estimate σm , misfit at the CMB σs , and combined quality factor σQ associated with 
the four expressions from field model CHAOS4α at epoch 2005 and for Nmax = 13. Last three columns show the 
magnetic core radius estimate rm

c , its standard deviation and minimum/maximum (all in km).

Expression σm σs σQ rm
c std min/max

Power law −5.376 0.186 0.689 3294.5 3.1 94.8/116.1
McLeod’s rule 3.009 0.140 0.477 3586.5 3.2 −196.3/−176.7
Non-zonal 0.141 0.107 0.276 3486.6 4.7 −8.0/20.7
Quadrupole family 0.430 0.129 0.342 3496.7 5.9 −4.5/34.9
Fig. 2. Evolution of σs ((a), Eq. (17)), σm ((b), Eq. (18)) and σQ ((c), Eq. (19)) for 
a varying Nmax for field model CHAOS4α at epoch 2005, and for the power law 
(inverted triangles), McLeod’s rule (stars), non-zonal (diamonds) and quadrupole 
family (squares) expressions fits.

4.3. Time-dependence

With the exception of model gufm1 at epoch 1980, our tests 
show that the two new proposed expressions offer better approx-
imations to the geomagnetic spatial power spectrum at a given 
time. In the following we test the time-dependence of these statis-
tics.

We show in Fig. 4 the behavior of σQ for the four tested field 
models as a function of the model epoch. Results associated with 
the CHAOS4α model series exhibit very little change, lower than 
0.01 for the 13-yr long interval (Fig. 4(a)). A similar behavior can 
be observed for the CM4 field model (Fig. 4(b)). There is no par-
ticular trend over the considered 40-yr long interval, with for in-
stance a minimum value observed in 1995 (0.337) and a maximum 
in 1975 (0.368) for the quadrupole family expression. For these 
two field models the non-zonal expression gives a slightly lower 
σQ than the quadrupole family expression. McLeod’s rule and the 
power law are associated with larger misfits.
Fig. 3. Same as Fig. 2 for the four described magnetic field models.

The longer series of IGRF and gufm1 show different results. 
IGRF models are available up to Nmax = 10 until 1995 and Nmax =
13 thereafter (Figs. 4(c1) and (c2) for a zoom over this last pe-
riod). There is more variability in the results. Prior to 1940 there is 
a smooth variation of σQ . In 1945 and 1950, there is a clear jump; 
this can be associated with the peculiar behavior of IGRF models at 
these epochs as reported by Xu (2000). After 1955 the evolution of 
σQ is less monotonic than before 1940. As for CHAOS4α and CM4, 
the non-zonal and quadrupole family expressions provide better 
approximations to the geomagnetic spatial power spectrum and 
better estimates of the core radius. We also compare the results 
for Nmax = 10 and 13 after 2000. Taking into account these three 
additional terms leads to better results, except for McLeod’s rule. 
However it is worth noting that σQ is poorer for IGRF than for 
CM4 or CHAOS4α at similar epochs.

Finally we consider the gufm1 field model series. Prior to 1840, 
there were no magnetic observatories at the surface of the Earth 
(Barraclough, 1974; Bloxham and Jackson, 1992), so we chose to 
focus only on the 1840–1990 period. Two different Nmax values are 
tested, namely 8 and 13. Before 1940, field models up to Nmax = 8
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Fig. 4. Quality factor σQ as a function of time for four different field models: power law (inverted triangles), McLeod’s rule (stars), non-zonal expression (diamonds) and 
quadrupole family expression (squares). (a) CHAOS4α from 1997 to 2010: 1-yr time interval, Nmax = 13; (b) CM4 from 1960 to 2000: 5-yr time interval, Nmax = 13; (c1) 
IGRF from 1900 to 2000: 5-yr time interval, Nmax = 10 (closed symbols) or 13 (opened symbols); (c2) zoom of (c1) from 2000 to 2010; (d) gufm1 from 1840 to 1990: 10-yr 

time interval, Nmax = 8 (closed symbols) or 13 (opened symbols).
are better fitted (lower σQ ) than those up to Nmax = 13. After 1960 
the lowest misfit is obtained for McLeod’s rule when Nmax = 13
and by the non-zonal expression when Nmax = 8. In 1980 the low-
est σQ remains 	30% larger than for CM4 model at the same 
epoch.

There is a clear difference between CM4, CHAOS4α, IGRF and 
gufm1 series at similar epochs. The first two series have very 
steady results. Between 2000 and 2010 the evolution of the re-
sults should be identical between IGRF and CHAOS4α models if it 
was due to the evolution of the geomagnetic field rather than to 
the quality of the model: we find identical σQ in 2005 and 2010, 
but different, worse misfits in 2000 for IGRF. This is similarly ob-
served before 1980 in IGRF series. It is likely that the temporal 
variability seen in that model series and in the entire gufm1 series 
is due to variations in the quality of the field models rather than 
to the genuine temporal evolution of the geomagnetic field.

5. Planetary applications

In the previous sections we proposed, tested and validated two 
new expressions to both predict the shape of the magnetic field 
power spectrum (or at least of two sub-families of it) and to esti-
mate the distance to the magnetic sources (or the core radius for 
the Earth) using magnetic information only. This is an especially 
valuable information on other planets, where only remote mea-
surements are available.

The only other terrestrial planet with a global and active mag-
netic field of internal origin is Mercury (Anderson et al., 2011). 
However we cannot currently apply our method to this planet, 
because there is no spherical harmonics model of the Hermean 
magnetic field. This is mainly due to the particular orbit of the 
MESSENGER spacecraft around Mercury: it has a nearly polar but 
very eccentric orbit, and no measurements are acquired close 
enough to the planet above the southern hemisphere, making 
it very challenging to compute global models (Johnson et al., 
2012).

The magnetic fields of Jupiter, Saturn, Uranus and Neptune 
have been partly surveyed by different missions. Based on these 
measurements, global field models were derived. In the following 
we briefly summarize available magnetic field measurements and 
models as well as existing interior models, before attempting to 
estimate their planetary dynamo region radii.
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5.1. Jupiter

The interior of Jupiter is commonly described by a three-layer 
structure, with a deep-seated core, a surrounding envelope of 
metallic hydrogen and an outermost layer of molecular hydrogen 
(e.g., Guillot, 2005). The internal structure is mainly constrained 
by geodesy and high pressure experiments. The inner core is solid, 
and smaller than 0.15 Rj (Jupiter radius, 1 Rj = 69 911 km) with 
a mass ranging between 7 and 18 Earth masses. The metallic hy-
drogen layer is the most likely source of the Jovian dynamo. Under 
the large pressure inside the deep interior of Jupiter, it is indeed 
expected that hydrogen is present in the form of a metallic liquid. 
The transition between the molecular and metallic hydrogen layers 
is not sharp. Different studies place the depth at which this transi-
tion occurs between 0.73 and 0.90 Rj (Gudkova and Zharkov, 1999;
Guillot, 1999; Saumon and Guillot, 2004), with a transition layer 
of up to 0.1 Rj. This transition layer is however not thought to 
contribute to the dynamo which generates the magnetic field of 
Jupiter.

The Jovian system has been flown by several missions between 
1973 and 2003. Measurements were acquired either during flybys 
(Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses) or by an 
orbiting spacecraft (Galileo, from 1995 to 2003). Several studies 
used these measurements to model the jovimagnetic field. Most 
models used only partial datasets: for instance Smith et al. (1975)
used Pioneer 11 data only, whereas Connerney (1992) combined 
Pioneer 11 and Voyager 1 data. The position of the Io Flux-Tube 
(IFT) footprint as observed from the Earth or from Hubble Space 
Telescope was also used as an additional constraint (Connerney 
et al., 1998). Two models were computed using these data. VIP4 
used in situ Voyager 1 and Pioneer 11 measurements, completed 
by 100 observations of the IFT. VIT4 used more than 500 IFT loca-
tions, completed by the north-south magnetic field component of 
the Voyager 1 measurements, as they are the least influenced by 
external field.

Given the 30-yr period over which magnetic field measure-
ments were acquired (although not continuously), some attempts 
have been made to investigate the temporal variation of the 
jovimagnetic field. Using early datasets, some authors concluded 
that there were no evidence of a jovimagnetic secular variation 
(Connerney and Acuña, 1982; Dougherty et al., 1996). After the 
end of the Galileo mission Yu et al. (2010) compared the mag-
netic field as it had been modeled up to Nmax = 2 from Galileo 
measurements to models derived from older measurements. They 
concluded that no secular variation could be unambiguously de-
tected between Galileo’s and older epochs.

In a more recent work (Ridley and Holme, 2012; Ridley, 2012), 
all existing measurements within 12 Rj of the planet were com-
bined and integrated into two distinct models. Available measure-
ments were mainly collected at equatorial latitudes. As a conse-
quence the SH models of the Jovimagnetic field are limited in 
terms of their maximum degree. The first model is a time averaged 
model, denoted JTA and contains only main field Gauss coefficients. 
The second model is time dependent, denoted JSV and contains 
both main field and secular variation Gauss coefficients. Ridley
(2012) conducted a thorough comparison of the different models 
for varying parameters and maximum SH degree. They concluded 
that the JSV model is statistically superior to the JTA model. The 
main field and secular variation of their JSV model is considered 
to be reliable up to degree 5 and 2, respectively. The magnetic 
power spectrum of this JSV model is shown at Jupiter’s surface in 
Fig. 5(a).

Using the power law expression, Ridley (2012) visually esti-
mated the depth at which the spectrum becomes flat, and returned 
a dynamo radius at 0.75 Rj for Nmax = 2, and between 0.80 and 
0.85 Rj for Nmin = 2 and Nmax = 5. We present in Table 2 the es-
timates of the dynamo radius using the four expressions for Nmax
ranging between 3 and 6. The power law and McLeod’s rule offer 
systematically lower radius estimates than the two new expres-
sions. The results of the new expressions are not plausible for 
Nmax = 3 and 4 (i.e., with dynamo radius exceeding 1 Rj), but 
they become similar and converge for higher degree truncation. 
For Nmax = 5 (the maximum reliable degree considered by Ridley, 
2012) the dynamo region would be confined in a layer with a ra-
dius of 0.88 Rj. Other Jovian magnetic field models with Nmax = 4
are also considered. Using the VIP4 model we obtain unplausible 
dynamo radii larger than 1 Rj. The non-zonal and the quadrupole 
family expressions converge to a dynamo radius equal to 0.84 Rj 
for the VIT4 model.

We compare in Fig. 5(b) and (c) the predicted power spectra for 
the non-zonal and quadrupole family expressions to the observed 
ones for the JSV model of Ridley (2012). This independent estimate 
at 0.88 Rj for the dynamo radius is very close to the upper value 
of the molecular to metallic transition radius, and may thus be 
used to further discriminate between different interior models of 
Jupiter.

5.2. Saturn

The interior of Saturn is thought to be very similar to that of 
Jupiter. There is a central core whose size is uncertain (Guillot, 
2005; Nettelmann et al., 2013b). The core is surrounded by an in-
ner metallic hydrogen layer and an outer molecular hydrogen layer. 
The transition between these two layers is, as for Jupiter, not sharp 
(Guillot, 2005). The radius at which the molecular-to-metallic tran-
sition of hydrogen takes place is generally located close to 0.6 Rs 
(Saturn radius, 1 Rs = 60 268 km) (Gudkova and Zharkov, 1999;
Fortney, 2007). The dynamo has its origin in the metallic hydro-
gen shell, but it is uncertain whether the entire metallic hydro-
gen layer convects, as there could exist a transition layer (mixed 
molecular/metallic hydrogen) or stable stratified layer at the top 
of the convective region (Stevenson, 1980, 1983; Guillot, 2005;
Christensen and Wicht, 2008; Stanley and Mohammadi, 2008) 
which would confine the dynamo to the deeper layer.

The magnetic field model of Saturn is mostly constrained by 
Cassini measurements, although some flyby measurements by 
other spacecrafts are available (Smith et al., 1980; Ness et al., 
1981, 1982). Saturn’s magnetic field is very axisymmetric, and 
no non-zonal field can be detected (Cao et al., 2011). The most 
recent model uses the previous model as a priori and further as-
sumes a purely axisymmetric field up to degree 5, i.e., only zonal 
Gauss coefficients are solved for (Cao et al., 2012). The magnetic 
power spectrum of this field model is shown at Saturn’s surface 
in Fig. 5(d). Cao et al. (2012) estimated the dynamo radius at 
0.4 Rs when omitting the dipole term (i.e., using the power law 
for Nmin = 2 and Nmax = 5).

Here the non-zonal expression cannot be used, and only two 
Gauss coefficients can be used for the quadrupole family expres-
sion, i.e., g0

2 and g0
4. Using these two terms only, the estimated 

dynamo radius is found at 0.23 Rs (Table 3 and Fig. 5(e)). Cao et 
al. (2012) indicated that the error on their estimated g0

4 coeffi-
cient is of the same magnitude as the coefficient (g0

4 = 65 ±70 nT). 
Taking into account this error in our approach leads to a dynamo 
region radius ranging between 0.06 and 0.33 Rs. It is difficult to 
further assess the accuracy of this estimate. For comparison, a sim-
ilar approach on the Earth, using an axisymmetric geomagnetic 
field model up to Nmax = 5 would lead to a core radius of 0.62 Re 
(using the power law expression) or 0.71 Re (using only g0

2 and 
g0

4 in the quadrupole family expression as in the case of Saturn). 
The error on the Earth would thus be of the order of 0.15 radius. 
Taking into account this very large uncertainty, one could postu-
late that Saturn’s dynamo is confined within 0.23 ± 0.15 Rs. This 
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Fig. 5. Magnetic spatial power spectrum for the four giant planets at their surface in the left column, for their non-zonal (open symbols) and zonal (gray closed symbols) 
in the middle column, and quadrupole (open symbols) and dipole (gray closed symbols) family spectra in the right column at estimated dynamo radii: Jupiter (1, (b), (c)), 
Saturn ((d), (e)), Uranus ((f), (g), (h)) and Neptune ((i), (j), (k)). Thick horizontal lines represent the non-zonal and quadrupole family expression fit, respectively. For each 
planet the vertical scale remains identical except for Saturn.
Table 2
Relative radius of the dynamo region on Jupiter (1 Rj = 69 911 km) for increasing 
Nmax . Estimates are based on the jovimagnetic field model of Ridley (2012).

Nmax 3 4 5 6

Power law 0.50 0.61 0.65 0.63
McLeod’s rule 0.64 0.74 0.77 0.73
Non-zonal 1.20 1.00 0.88 0.77
Quadrupole family 1.06 1.03 0.89 0.79

is much deeper than the molecular-to-metallic transition of hy-
drogen, but the upper value of this dynamo radius estimate is 
consistent with an upper non-convective metallic hydrogen layer 
and in broad agreement with the results of Cao et al. (2012).

5.3. Uranus

Unlike Saturn and Jupiter, interior models of Uranus (and of 
Neptune, see below) do not predict a molecular-to-metallic tran-
sition of hydrogen (Hubbard et al., 1995). Uranus and Neptune are 
thought to be composed of three layers, namely a solid rocky core 
surrounded by two homogeneous envelopes of hydrogen, helium 
and water. The hydrogen atmospheres in Uranus is much smaller 
than in Jupiter and Saturn, and pressure and temperature condi-
tions necessary for a molecular-to-metallic transition are not met. 
These inner and outer envelopes only differ by their mass frac-
tion of heavy elements. Nettelmann et al. (2013a) used revised 
Table 3
Relative radius of the dynamo region on Saturn (1 Rs = 60 268 km) for increasing 
Nmax . Estimates are based on the magnetic field model of Cao et al. (2012). The 
non-zonal expression cannot be applied because of the axisymmetric nature of Sat-
urn’s magnetic field model.

Nmax 3 4 5

Power law 0.40 0.21 0.28
McLeod’s rule 0.50 0.26 0.33
Non-zonal N/A N/A N/A
Quadrupole family N/A 0.23 0.23

solid-body rotation periods and flattening values to re-investigate 
the interior of Uranus. They concluded that the radii of the core 
and of the inner envelope are close to 0.18 and 0.75 Ru, respec-
tively (Uranus radius, 1 Ru = 25 362 km). These recent results 
are consistent with previous studies (e.g., Podolak et al., 1995;
Helled et al., 2011). The dynamo of Uranus probably originates 
from the inner envelope (Hubbard et al., 1995; Stanley and Blox-
ham, 2004). At this depth the icy phases become electrically con-
ductive. Only the outer part of this shell would convect (Stanley 
and Bloxham, 2006).

The magnetic field of Uranus was discovered and measured 
by Voyager 2 when the spacecraft made a single flyby in 1986 
(Connerney et al., 1987). The construction of a global mag-
netic field model of Uranus is challenging, because of the very 
limited amount of measurements. We use the field model of
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Table 4
Relative radius of the dynamo region on Uranus (1 Ru = 25 362 km) for increas-
ing Nmax . Estimates are based on the Uranus magnetic field model of Holme and 
Bloxham (1996).

Nmax 3 4 5 6

Power law 0.82 0.62 0.51 0.44
McLeod’s rule 1.04 0.75 0.61 0.51
Non-zonal 0.86 0.66 0.53 0.43
Quadrupole family 0.74 0.66 0.56 0.47

Holme and Bloxham (1996), which is similar to that of Connerney 
et al. (1987), although it is developed to a higher degree (Nmax =
10 vs. Nmax = 3), and uses the surface heat flow as an additional 
constraint to regularize the model. Unlike the magnetic field of the 
Earth and of the giant gas planets, the field of Uranus (and that of 
Neptune) is not dominated by an axial dipole.

For Nmax = 3, Holme and Bloxham (1996) returned an esti-
mated dynamo region radius of 0.84 Ru using a power law. They 
restricted their computation to degree 3 as their spectrum falls 
down above that degree (Fig. 5(f)), due to the smoothing norm 
they imposed in the inversion. We give in Table 4 the estimated 
dynamo region radius using the four expressions for Nmax rang-
ing between 3 and 6. For Nmax = 3 the radius of the dynamo is 
between 0.74 and 0.86 Ru depending on the expression. Interest-
ingly, the non-zonal and quadrupole family expressions converge 
for Nmax = 4 (Fig. 5(g) and (h)), with a dynamo radius estimate at 
0.66 Ru. Our result is consistent with previous studies, as it would 
place the top of the dynamo region between 0.66 and 0.86 Ru. This 
result is within the range of the inner-to-outer envelope transition 
(Nettelmann et al., 2013a).

5.4. Neptune

The interior structure of Neptune is similar to that of Uranus, 
with no metallic hydrogen layer. Using the same techniques as for 
Uranus, Nettelmann et al. (2013a) studied the interior structure of 
Neptune. Based on their results the radius of the inner envelope 
(where the dynamo is expected to originate) would be shallower 
than on Uranus. The rocky core radius is estimated at 0.3 Rn (Nep-
tune radius, 1 Rn = 24 622 km) and that of the inner hydrogen 
envelope is close to 0.85 Rn (see Nettelmann et al., 2013a, Fig. 4).

The knowledge of Neptune’s interior and magnetic field is 
closely related to that of Uranus. Voyager 2 made also a flyby 
around Neptune in 1989 (Connerney et al., 1991). The derivation 
of a global model of its magnetic field is very difficult. The model 
of Connerney et al. (1991) is computed up to Nmax = 8 but co-
efficients with n larger than 3 are poorly resolved or unresolved. 
As for Uranus’, modeling the magnetic field of Neptune therefore 
requires additional constraints for its regularization. In the follow-
ing we use the model of Holme and Bloxham (1996). This model 
is derived up to Nmax = 16, but as for Uranus, high degree terms 
are not reliable. Its spatial power spectrum at Neptune’s surface is 
shown on Fig. 5(i).

For Nmax = 3, Holme and Bloxham (1996) returned a radius of 
the dynamo region equal to 1.05 Rn using the power law expres-
sion. As pointed by the authors, this clearly shows that standard 
methods fail to correctly estimate the dynamo radius here, because 
they imply a dynamo radius outside the planet, which is impossi-
ble. We give in Table 5 the dynamo radius for varying Nmax . For 
Nmax = 3 none of the expressions return a plausible value (radius 
exceeding 1 Rn). For Nmax = 5 (Fig. 5(j) and (k)) the non-zonal 
and quadrupole family expressions are very similar and give a dy-
namo radius close to 0.93 Rn. This estimate decreases to 0.82 Rn 
for Nmax = 6.

We also use an overdamped model and an underdamped model 
as presented by Holme and Bloxham (1996), but with different 
Table 5
Relative radius of the dynamo region on Neptune (1 Rn = 24 622 km) for increas-
ing Nmax . Estimates are based on the Neptune magnetic field model of Holme and 
Bloxham (1996).

Nmax 3 4 5 6

Power law 1.06 0.94 0.87 0.77
McLeod’s rule 1.34 1.15 1.04 0.90
Non-zonal 1.10 1.00 0.93 0.82
Quadrupole family 1.08 1.03 0.94 0.83

damping parameters. These two alternative models are used to test 
the sensitivity of our results to the field model error. The effect 
of damping is to modify the resulting magnetic field model, and 
thus its spectrum. For Nmax = 5 (6) both non-zonal and quadrupole 
family expressions return a dynamo radius of 0.96 (resp. 0.86) Rn 
for the underdamped model, and 0.89 (resp. 0.79) Rn for the over-
damped model. The model of Connerney et al. (1991) returns a 
dynamo radius close to 0.94 when truncated to Nmax = 5. Overall 
the non-zonal and quadrupole family expressions point towards a 
dynamo region radius between 0.79 and 0.96 Rn, which is consis-
tent with the shallower inner convecting envelope of Nettelmann 
et al. (2013a).

6. Concluding remarks

In this study we propose, compare, test and validate two new 
expressions to fit the magnetic field power spectrum immediately 
above the region of the dynamo. The first expression relies on the 
non-zonal part of the spatial geomagnetic power spectrum (i.e., 
terms with m �= 0), and the second one on the quadrupole fam-
ily (i.e., n + m even). These expressions are tested using recent 
models of the geomagnetic field. They offer a satisfying approx-
imation to the form of the spatial geomagnetic power spectrum 
sub-families. With these high quality models, based on accurate 
measurements of the Earth’s magnetic field, and using these new 
expressions it is possible to reliably estimate the Earth’s dynamo 
(core) radius using geomagnetic field measurements only. Non-
zonal and quadrupole family expressions return dynamo radius 
between 3486.6 and 3496.7 km, i.e., within less than 15 km of the 
seismic value. The associated uncertainty, taking into account an 
estimated error on the Gauss coefficients, is of the order of 5 km. 
These results can be seen as the most reliable estimates of the 
Earth’s outer core radius using magnetic measurements alone.

A direct application of these expressions is the evaluation of 
the distance to the magnetic sources on other planets and moons 
which possess an internal dynamo and where there exists a global 
model of their internal magnetic field. Other such bodies are 
Jupiter, Saturn, Uranus and Neptune. For these four giant planets 
we derive new and independent estimates of their dynamo radii, 
provided that their dynamo regime is similar to that of the Earth. 
For Jupiter, Uranus and Neptune we found dynamo radii of 0.88 Rj, 
0.66–0.86 Ru, and 0.79–0.96 Rn, respectively. These values are in 
agreement with the location of inner and outer envelopes within 
each of these planets as derived from independent studies (e.g., 
Saumon and Guillot, 2004; Nettelmann et al., 2013a). Overall these 
new results can be used to further constrain their internal struc-
ture. For Saturn, the purely axisymetric nature of the magnetic 
field restrains us to confidently estimate the dynamo radius.

It should be noted that the quadrupole family expression pro-
posed here relies on a dynamical scenario in which rotational ef-
fects dominate and the flow in the dynamo region is organized 
along axial columns. When convection exceeds a certain threshold 
the flow becomes more three dimensional and these axial columns 
break (Kutzner and Christensen, 2002; Christensen and Aubert, 
2006; Olson and Christensen, 2006). Columnar flow is likely to 
prevail in the dynamo regions of Earth, Jupiter and Saturn, which 
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exhibit axial dipole dominated magnetic fields. However, the non-
axial non-dipolar magnetic fields of Uranus and Neptune may sug-
gest that the convection in these planets is strong enough to break 
axial columns; our quadrupole family expression might not be ad-
equate for these planets. Nevertheless, it is interesting that our 
results using the two sub-families for each planets converge, in-
cluding for Uranus and Neptune.

Caution is however required when analyzing the spectra of gi-
ant gas planets. Associated magnetic field models do indeed rely 
on very limited observations, and the different regularization or 
damping parameters used may affect their spectra, so that specific 
expressions might be built in the field models (e.g., Connerney, 
1993). At this stage we use the existing models; new data from 
future missions will allow to improve our estimates.

Spherical harmonics models of the magnetic field of Mercury 
and Ganymede are not yet available, but they will be in the future 
with the BepiColombo and JUICE missions (Benkhoff et al., 2010;
Grasset et al., 2013). Preliminary models based on the MESSEN-
GER mission data show that the internal Hermean magnetic field 
is dominated by g0

1 and g0
2 (Anderson et al., 2012). Our quadrupole 

family expression could provide a prediction to other coefficients 
of the field, provided that the radius of the dynamo is known. 
To maintain a quadrupole family spectrum independent of n above 
the dynamo, and assuming that non-zonal features of degree 2 are 
not (yet) supported by the observations, then the power in the ax-
ial quadrupole (i.e., g0

2) would be roughly balanced by the power 
in the equatorial dipole (i.e., g1

1 and h1
1). However, existing mod-

els of the Hermean magnetic field are very axial, with a tilt of 
the dipole lower than 0.8◦ (Anderson et al., 2012), correspond-
ing to very small g1

1 and h1
1. The quadrupole family expression 

may be non-applicable possibly because rotational effects are less 
dominant in the case of Mercury. Alternatively, taking into ac-
count higher degree terms may change the slope of the observed 
sub-family spectrum, including its low-end. More elaborated future 
models will allow testing the existence of such terms in Mercury’s 
core field.

The new expressions we propose can also be used to bring ad-
ditional constraints on numerical dynamo modeling (Christensen 
and Wicht, 2008) and to extrapolate the observed magnetic field 
and its spectrum beyond the limit of crustal magnetic field screen-
ing (Finlay and Amit, 2011). Indeed combining both non-zonal
and quadrupole family expressions bring constraints on all Gauss 
coefficients but zonal odd terms. This could also be considered 
when looking for alternative regularization functions in the inverse 
problem for computing new planetary magnetic field models (e.g., 
Holme and Bloxham, 1996).

Finally, other information can be gained by studying the spa-
tial power spectrum of the secular variation (Holme et al., 2011), 
or the so called secular variation correlation time, which re-
lates the spatial power spectrum of the magnetic field to that of 
its secular variation (Stacey, 1992; Hulot and Le Mouel, 1994). 
Several studies proposed scaling laws for the correlation time 
as a function of the degree n (Christensen and Tilgner, 2004;
Lhuillier et al., 2011; Holme et al., 2011; Christensen et al., 2012). 
As for the Rn series, the dipole term of the correlation time is 
always underestimated, while the quadrupole term tends to be 
overestimated (e.g., Harrison, 1994). This could motivate consider-
ing a sub-family of this correlation time as proposed in this paper. 
Assuming our approach is valid, meaning Rnz

n and Rqf
n are indepen-

dent of n at the CMB, then the secular variation spectrum, or some 
of its sub-families should obey to some law.
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