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2CNRS UMR 6112, Université de Nantes, Laboratoire de Planétologie et de Géodynamique, 2 Rue de la Houssinière, Nantes, F-44000, France

Accepted 2011 March 31. Received 2011 March 30; in original form 2010 November 23

S U M M A R Y
We present a method to estimate the typical magnitude of flow close to Earth’s core surface
based on observational knowledge of the geomagnetic main field (MF) and its secular variation
(SV), together with prior information concerning field-flow alignment gleaned from numerical
dynamo models. An expression linking the core surface flow magnitude to spherical harmonic
spectra of the MF and SV is derived from the magnetic induction equation. This involves
the angle γ between the flow and the horizontal gradient of the radial field. We study γ

in a suite of numerical dynamo models and discuss the physical mechanisms that control
it. Horizontal flow is observed to approximately follow contours of the radial field close to
high-latitude flux bundles, while more efficient induction occurs at lower latitudes where
predominantly zonal flows are often perpendicular to contours of the radial field. We show
that the amount of field-flow alignment depends primarily on a magnetic modified Rayleigh
number Raη = αg0�TD/η�, which measures the vigour of convective driving relative to the
strength of magnetic dissipation. Synthetic tests of the flow magnitude estimation scheme are
encouraging, with results differing from true values by less than 8 per cent. Application to
a high-quality geomagnetic field model based on satellite observations (the xCHAOS model
in epoch 2004.0) leads to a flow magnitude estimate of 11–14 km yr−1, in accordance with
previous estimates. When applied to the historical geomagnetic field model gufm1 for the
interval 1840.0–1990.0, the method predicts temporal variations in flow magnitude similar to
those found in earlier studies. The calculations rely primarily on knowledge of the MF and SV
spectra; by extrapolating these beyond observed scales the influence of small scales on flow
magnitude estimates is assessed. Exploring three possible spectral extrapolations we find that
the magnitude of the core surface flow, including small scales, is likely less than 50 km yr−1.

Key words: Dynamo: theories and simulations; Satellite magnetics; Planetary interiors.

1 I N T RO D U C T I O N

Flow of electrically conducting fluid in the Earth’s liquid outer
core generates the geomagnetic field via motional induction. De-
tailed understanding of this process requires reliable, observation-
based, estimates of the typical magnitude of the core flow U . For
example, knowledge of U is needed to calculate fundamental non-
dimensional parameters such as the magnetic Reynolds number
Rm = UL/η and the Rossby number Ro = U/�L, where L is a
characteristic length scale, η is the magnetic diffusivity and � is
the angular rotation rate of the system. Rm and Ro, respectively,
diagnose the kinematic and dynamic regime of dynamos driven by
rotating convection. Without robust knowledge of U it is difficult
to assess how close numerical dynamo models are to an earth-like
regime. Since present simulations yield results spanning a wide
range of Rm (Roberts & Glatzmaier 2000; Christensen & Tilgner
2004) and Ro (Christensen & Aubert 2006; Olson & Christensen
2006; Sreenivasan & Jones 2006) that encompass distinct be-

haviours ranging from non-reversing and dipole-dominated, to re-
versing multipolar fields (Kutzner & Christensen 2002), it would be
extremely helpful if geomagnetic observations could place tighter
limits on acceptable values of Ro and Rm. In this study, we attempt
to make some progress towards this goal by developing a new tech-
nique to estimate the typical magnitude of horizontal flow at the
Earth’s core surface 〈uH〉 which hereafter is used as a proxy for U .

Previous efforts to estimate 〈uH〉 have focused on inferences
from observed changes [i.e. secular variation (SV)] in the Earth’s
core-generated main field (MF), following an idea originating with
Elsasser (1939). From scale analysis of the magnetic induction equa-
tion (and neglecting magnetic diffusion), one can estimate the order
of magnitude of flow required to explain the observed SV, given
the observed magnitude of the MF and an assumed length scale
for core motions (Elsasser 1946; Elsasser 1950a). A later idea was
to determine the angular speed of foci of non-dipole field at the
Earth’s surface, and then to calculate the magnitude of flow at the
core surface necessary to produce this motion (Bullard et al. 1950).
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Roberts & Scott (1965) pointed out that detailed maps of the
horizontal flow uH , just below the thin Ekman–Hartmann bound-
ary layer at the top of the core, could be obtained from spher-
ical harmonic models of the radial MF, Br and its SV, ∂ Br/∂t ,
again provided magnetic diffusion can be neglected; Vestine and
co-workers proceeded to calculate such maps (see Kahle et al.
1967a; Kahle et al. 1967b). Later Backus (1968) pointed out
that such core flow determinations are inherently non-unique,
due to a lack of information from the radial frozen-flux in-
duction equation concerning the solenoidal part of the product
Br uH . A simple example of this difficulty is that flow along null
flux contours (where Br = 0) produces no SV, so it is unconstrained
by observations of the MF evolution. Backus (1968) also proved
that unique estimates of certain flow components were possible at
specific topological locations. These point estimates provide useful
direct estimates (see, e.g. Booker 1969; Whaler & Holme 2007),
but unfortunately sample only a very small portion of the core sur-
face, capture only one component of the flow, and are subject to
difficulties in estimating the amplitude of errors on point estimates
of the MF at the core surface.

Over the past three decades, modern core flow inversion stud-
ies have exploited a variety of dynamical constraints and trunca-
tion and regularization assumptions (for comprehensive reviews see
Bloxham & Jackson 1991; Holme 2007; Finlay et al. 2010) in an
attempt to mitigate the effects of non-uniqueness. In such studies,
estimates of 〈uH〉 are derived from the root mean square (rms) mag-
nitude of uH at the core surface. In Table 1 we present a selection of
published flow magnitude estimates. These encompass both early
foci tracking and point estimate methods, and results from more
recent flow inversions involving a diverse range of dynamical as-
sumptions, inversion strategies and sets of magnetic observations.
These previous observation-based estimates of 〈uH〉 at the Earth’s
core surface range from 4–22 km yr−1.

The spread in the values reported in Table 1 is a consequence
both of the different geomagnetic observations used, and of the dif-
ferent methods of flow estimation employed. All previous estimates
of 〈uH〉 suffer from a number of fundamental limitations. First, as
mentioned above, flow along contours of Br at the core surface
produces no SV (Backus 1968; Backus & LeMouël 1986) so this
flow component is unconstrained by magnetic observations. Sec-
ondly, small scales of the MF and SV cannot be resolved in present
geomagnetic field models, limiting flow inversions to large scales
(Hulot et al. 1992). Moreover, large-scale SV can be generated by
the interactions of small-scale field and large-scale flow, or large-
scale field and small-scale flow (Bullard & Gellman 1950), so core
flow models based only on the observed MF and SV may be biased
(Eymin & Hulot 2005; Gillet et al. 2009). Finally, the influence of
magnetic diffusion is almost always ignored in inversion schemes
which may lead to local biases in the flow determination (Amit &
Christensen 2008). These difficulties have been well illustrated in
studies of core flow inversions of the output from numerical dy-
namo models. Rau et al. (2000) found that the mean core surface
flow magnitude obtained by inversion underestimated the true sur-
face flow magnitude by as much as a factor of 2 (see their table 2)
even if information concerning all length scales of the core surface
MF is provided. The magnitude estimates of Amit et al. (2007) us-
ing their helical flow inversion method are better, typically within
about ±15 per cent of the true rms flow magnitude, but when the
SV was low-pass filtered, removing the small-scale details, their
estimates also deteriorated significantly.

Uncertainties related to existing core flow magnitude estimates
motivate us to explore a new alternative scheme. The approach set

out below allows one to estimate the rms core surface flow mag-
nitude 〈uH〉 from knowledge of spatial spectra of MF and SV at a
particular epoch together with prior knowledge on field-flow align-
ment obtained from numerical dynamo models. We argue below
that global aspects of this essential facet of magnetic induction are
adequately captured in the present generation of numerical dynamo
models.

Knowledge concerning the relative alignment of magnetic field
and flow in rapidly rotating, convection-driven, dynamos is central
to our approach. Field-flow alignment, how it arises dynamically
(Mason et al. 2006), its relation to dynamo saturation (Cameron &
Galloway 2006; Cattaneo & Tobias 2009; Schrinner et al. 2010) and
its influence on the partitioning between kinetic and magnetic ener-
gies (Archontis et al. 2007) are subjects of ongoing debate among
dynamo theoreticians. It is also intimately related to an integral
property called cross-helicity (Moffatt 1978), which is of great in-
terest in studies of magnetohydrodynamic (MHD) turbulence (Perez
& Boldyrev 2007) where problems are formulated in terms of the
Elsasser variables (u ±B) (Elsasser 1950b). To our knowledge the
only previous study of field-flow alignment in numerical models of
the geodynamo was that by Takahashi & Matsushima (2005). They
observed that as the convective forcing (measured by the Rayleigh
number Ra) was increased, less flow perpendicular to field lines
occurred, the dynamos became less efficient, and there was a reduc-
tion in magnetic energy. In this investigation we focus on field-flow
alignment close to the outer boundary and on extracting the informa-
tion required by our flow magnitude estimation scheme. We study
the relation between different characteristic field structures and the
degree of field-flow alignment. We also investigate the dependence
of the globally averaged amount of field-flow alignment close to
the outer boundary on the non-dimensional parameters controlling
the numerical dynamo models.

In Section 2 we present the mathematical details of our new flow
magnitude estimation scheme; the information required is shown to
take the form of MF and SV spectra together with an rms measure
of the field-flow alignment at the core surface. In Section 3 we
test the method using a small suite of numerical dynamo models,
and propose a scaling law for applying it to the Earth’s core. We
also present spatial variations of field-flow alignment in the models
and discuss the underlying mechanisms at work. In Section 5 we
apply our scheme to the Earth, using both recent and historical
geomagnetic field models, and derive new estimates for 〈uH〉 in
the Earth’s core and how this has varied with time. The impact of
unobserved small scales on estimates of 〈uH〉 is discussed and a
new range of plausible values is proposed.

In Section 6 we report new estimates of Rm and Ro based on
our results. Flow magnitude estimates based on the observed MF
and SV, and also estimates taking into account possible extrapola-
tions to smaller scales are considered. In the calculation of Ro we
assign flow length scales Lu based on the SV spectrum. In addi-
tion to the traditional Rm = ULh

B/η, we consider an alternative
magnetic Reynolds number Rmr = U(Lr

B)2/ηLh
B that takes into

account radial magnetic diffusion. Here Lh
B is the length scale of

the MF in the horizontal direction while Lr
B is the length scale of

the MF in the radial direction, associated with a magnetic diffusion
boundary layer close to the core surface. A magnetic Reynolds num-
ber containing two distinct length scales was previously proposed
by Takahashi & Matsushima (2005) and Takahashi et al. (2008).
Their analysis focused on comparing the importance of stretch-
ing of MF by the flow to the effects of magnetic diffusion, that
is, they instead accounted for distinct flow and field length scales.
In contrast, we consider the importance of horizontal advection
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Table 1. Estimates of the core surface flow magnitude 〈uH 〉 in units of km yr−1 from a selection of previous studies. Flow magnitudes have been rounded to
2 significant figures for easy comparison. Ranges quoted correspond to different magnetic field models, physical assumptions, parametrizations and inversion
strategies explored in the flow estimation for each study. Methods are reported in terms of the categories INV indicating rms values from full inversions of
the frozen-flux radial induction equation, PE indicating rms point estimates of the flow normal to null flux curves and TF indicating tracking of individual
non-dipole field features. In the data column names of field models are given where available, otherwise a reference is provided.

Study Data Epoch Method 〈uH 〉/km yr−1

Lesur et al. (2010) Co-estimated from CHAMP data 2005 INV 11 − 13
Gillet et al. (2009) CM4 / xCHAOS 1960–2007 INV 12 − 14
Olsen & Mandea (2008) xCHAOS 2000–2007 INV 10 − 17
Wardinski et al. (2008) CHAOS 2000–2006 INV 16 − 18
Pais & Jault (2008) CHAOS 2001–2004 INV 16 − 19
Whaler & Holme (2007) ufm1 1970–1980 PE 16 − 19
Amit & Olson (2006) gufm1 1840–1990 INV 8 − 15
Amit & Olson (2004) Langlais et al. (2003) 1980–2000 INV 7 − 22
Pais et al. (2004) ufm1 1840–1990 INV 4 − 12
Jackson (1997) ufm1 1840–1990 INV 11 − 19
Backus et al. (1996) IGRF1980 1980 PE 13
Bloxham (1992) ufm1 1840–1990 INV 10 − 13
Gire & LeMouël (1990) USGS80, GSFC80 1980 INV 15
Bloxham (1989) Bloxham & Jackson (1989) 1915–1980 INV 11 − 19
Voorhies (1986) GSFC80 1960–1980 INV 9 − 22
Booker (1969) GSFC(12/66) 1945–1960 PE 9
Kahle et al. (1967b) Vestine et al. (1947); 1912–1955 INV 10 − 15

Nagata & Syono (1961) 1955–1960
Bullard et al. (1950) Vestine et al. (1947) 1905–1945 TF 8 − 14

compared to radial magnetic diffusion by using distinct radial and
horizontal MF length scales. We evaluate Ro, Rm and Rmr for
various possible choices of Lu and Lh

B . Limitations of the new
methodology are also discussed. In Section 7 we conclude with
a summary of our findings, describe possible extensions to other
MHD systems and discuss implications for the geodynamo.

2 T H E O RY

The radial magnetic induction equation in spherical polar coordi-
nates (r , θ , φ) just below an impenetrable boundary where the radial
velocity vanishes (ur = 0) takes the form

∂ Br

∂t
+ uH · ∇H Br + Br (∇H · uH ) = η

[
1

r 2

∂2

∂r 2
(r 2 Br ) +∇H

2 Br

]
,

(1)

where η is magnetic diffusivity and ∇H = ∇ − (∂/∂r )r̂ is the gra-
dient tangential to the spherical surface. The frozen-flux hypothesis
(Roberts & Scott 1965; Jackson & Finlay 2007) assumes that the
majority of SV on short time-scales and large length scales is pro-
duced by the advection and stretching action of the velocity field
rather than diffusion of the magnetic field due to the finite electrical
conductivity. Under this assumption, (1) simplifies to

∂ Br

∂t
+ uH · ∇H Br + Br (∇H · uH ) = 0. (2)

We further assume that purely toroidal flow with ∇H · uH = 0
is responsible for the majority of the observed SV. Whaler (1980)
argued that extreme points where ∇H Br = 0 are characterized
by low SV, suggesting that poloidal motions at these locations are
weak. Lloyd & Gubbins (1990) later carried out successful inver-
sions for purely toroidal core flows arguing that this is the most
sensible zeroth order approximation, especially given the difficulty
in constraining poloidal flows with SV. Even when alternative as-
sumptions such as tangential geostrophy (LeMouël 1984) or helical
flow (Amit & Olson 2004) are made, the inverted flows are usually
predominantly toroidal. For example, Bloxham (1992) found that
in his tangentially geostrophic steady flows, spanning 1840–1990,

toroidal motions accounted for over 90 per cent of the kinetic en-
ergy; more recently Wardinski et al. (2008) found that toroidal flows
constituted 93 per cent of the kinetic energy of their tangentially
geostrophic time-dependent flows derived from a field model based
on satellite observations. The dominance of toroidal over poloidal
flows can also be seen in the kinetic energy spectra of Eymin &
Hulot (2005, their fig. 4b) and Pais & Jault (2008, their fig. 6).
Furthermore, in the study of numerical dynamos models by Rau
et al. (2000) toroidal flows were found to account for more than 90
per cent of the total kinetic energy close to the outer boundary. Al-
though weak poloidal flow likely exists at the core surface (Beggan
& Whaler 2008), focusing on toroidal flows is probably a reasonable
simplifying approximation, especially in the context of global flow
magnitude estimates.

Under the toroidal flow assumption, the radial frozen-flux induc-
tion eq. (2) simplifies to

∂ Br

∂t
= −uH · ∇H Br . (3)

Next, since we perform global averaging, so it is convenient to
introduce a bracket notation to represent the rms value of any scalar
quantity g on a spherical surface S of radius r = c

〈g〉 =
√√√√ 1

4π

∫
S

[g(c)]2 sin θdθ dφ. (4)

Applying this averaging operator to both sides of (3) we obtain,

〈∂ Br/∂t〉 = 〈uH · ∇H Br 〉. (5)

The scalar product on the right-hand side of (5) can be expanded as,

〈∂ Br/∂t〉 = 〈|uH | |∇H Br | | cos γ |〉, (6)

with

cos γ = uH · ∇H Br

|uH | |∇H Br | , (7)

where γ is the angle between the vectors uH and ∇H Br so that
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(π/2 − γ ) is the angle between a Br–contour and the core surface
flow uH . Note that cos γ (θ , φ) is a local scalar quantity, for which
the rms on a spherical surface may be calculated in the usual manner.

To make further progress, an additional step is required. We
proceed assuming that |uH (θ , φ)|, |∇H Br(θ , φ)| and | cos γ (θ , φ)|
are spatially uncorrelated, which makes it possible to separate the
rms of their product into the product of their respective rms values.

〈|uH | |∇H Br | | cos γ |〉 = 〈uH〉 〈∇H Br 〉 〈cos γ 〉, (8)

where we have been able to dispense with the absolute signs on
the right-hand side because |g|2 = g2. We are unable to justify
the assumption of spatially uncorrelated quantities in (8) a priori,
but by analysing the output from numerical dynamos models we
have found that empirically this is often the case (see Section 3).
A related assumption was previously made by Hulot et al. (1992)
in their study of the effects of field truncation on the flow. They
considered that the spectral coefficients representing the field and
flow were independent, zero mean, random variables which enabled
useful expressions for rms interaction terms to be obtained (see
their section 4.2 and especially eq. 31b). It is worth recalling that
our treatment does, of course, account for the directional correlation
between the vector quantities uH and ∇H Br through the factor cos γ

in the expansion of the scalar product; it is only the magnitudes of
these two vector quantities and the magnitude of the cosine of the
angle between them that we assume to be spatially uncorrelated.

Substituting (8) into (6) and rearranging gives

〈uH 〉 = 〈∂ Br/∂t〉
〈∇H Br 〉 〈cos γ 〉 . (9)

This relation may easily be interpreted physically; it states that the
rms flow magnitude is proportional to the rms magnitude of the SV
and inversely proportional to the rms magnitude of the horizontal
gradient of the radial field (with a large gradient even a weak flow
can produce large SV). It also clearly reveals that if the flow is on
average nearly parallel to contours of the radial field (i.e. 〈 cos γ 〉 ∼
0) then a very strong flow will be necessary to explain the observed
SV.

Considering the velocity and magnetic fields output from numer-
ical dynamo models on a latitude–longitude grid, one can directly
estimate the quantities in (9), ∇H Br, ∂ Br/∂t as well as cos γ , in
physical space. In Section 3, quantities that involve spatial deriva-
tives (such as ∇H Br) are calculated using centred finite-differencing
on the same grid that was used for the dynamo calculations. The
rms quantities are then be calculated by a numerical approximation
to (4).

Alternatively, 〈 ∂ Br/∂t 〉 and 〈∇H Br〉 can be calculated directly
in spectral space by summing appropriate combinations of spherical
harmonics. This turns out to be particularly useful when working
with observation-based field models where the MF and SV are
typically provided in the form of spherical harmonic coefficients
(see Section 5). As shown in the Appendix, (9) can be written in
terms of Schmidt quasi-normalized spherical harmonic spectra as

〈uH 〉 =

√
∞∑

l=1

(l+1)
(2l+1) Ql (c)

√
∞∑

l=1

l(l+1)2

c2(2l+1)
Rl (c) 〈cos γ 〉

, (10)

where l is the spherical harmonic degree, and Rl(c) and Ql(c) are
Mauersberger–Lowes spectra (Mauersberger 1956; Lowes 1966;
Lowes 1974) of the MF and the SV, respectively, at the core surface,
as defined in the Appendix. Since (10) is written in terms of the

spherical harmonic spectra, it is evident that our estimate of 〈uH〉
uses only information concerning the globally averaged properties
of the field and is not based on any particular local features, since
all phase information is absent. In the next section we use numerical
dynamo models to test this flow estimation scheme.

3 T E S T S W I T H N U M E R I C A L DY NA M O
M O D E L S

3.1 Setup and non-dimensional parameters for numerical
experiments

In this section we report a series of synthetic tests of the method
proposed in the previous section. These tests involve 3-D numeri-
cal dynamo models computed using the simulation code MAGIC
(Wicht 2002). We use an earth-like geometry of ri/ro = 0.35, where
ri is the inner boundary radius and r 0 is the radius of the outer
boundary. We examined models sampling a range of control param-
eters in an attempt to characterize the parameter dependence of our
results. All the models studied have electrically insulating, no-slip
and isothermal (fixed temperature) boundary conditions. In all cases
a spherical harmonic truncation degree of 64 was employed except
in case M8 where it was increased to 168. The same truncation
level was used for both the field and the flow. In physical space the
grid is regular in the horizontal direction, that is, fixed angular grid
step in both longitude and latitude, with 192 longitude grid points
and 96 latitude grid points for all cases except M8 which used 480
and 240 points, respectively. The number of radial grid points in-
creases with decreasing Ekman number so that each model has at
least five grid points resolving the Ekman boundary layers. Because
we are mostly interested in magnetic field evolution on time-scales
short compared to the magnetic diffusion time, and because we will
later apply our method to observations of the geomagnetic field, we
focused on dipole-dominated non-reversing dynamos.

The control parameters, the Ekman number Ek = ν/�D2,
the Rayleigh number Ra = αg0�T D3/κν, the Prandtl number
Pr = ν/κ and the magnetic Prandtl number Pm = ν/η, for the
runs investigated are given in Table 2. Here α is the thermal expan-
sivity, g0 is the value of gravity on the outer boundary, �T is the
temperature difference between the inner and outer boundaries, D
is the shell thickness, ν is the kinematic viscosity, κ is the thermal
diffusivity, � is the rotation rate and η is as before the magnetic
diffusivity. The suite of models studied here is the same as that pre-
viously studied by Amit & Christensen (2008) with the addition of
one extra model with lower magnetic Prandtl number (model M9 in
Table 2). Also given in Table 2 are the diagnostic output values of
the global magnetic Reynolds number Rm = UD/η and the global
Rossby number Ro = U/�D calculated using U based on the total
kinetic energy in the spherical shell and a single length scale D.
The models differ in the complexity of the small-scale features, that
is, by the amount of kinetic energy which is accommodated by the
small scales. Due to numerical limitations, all the models explored
here are unfortunately many orders of magnitude away from the
Earth-like values of Ra, Ek and Pm. They do however have the cor-
rect order of magnitude for the global magnetic Reynolds number,
which suggests they may correctly mimic kinematic and induction
processes relevant to the Earth’s core.

We also report the value of an additional parameter, which we
term the ‘magnetic modified Rayleigh number’,

Raη = αg0�T D

η�
= Ra · Ek · Pm

Pr
= Ra′ · Pm, (11)
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Table 2. Input control parameters for the numerical dynamos and estimated values for Earth’s core: Rayleigh number Ra, Ekman number Ek, magnetic Prandtl
number Pm and Prandtl number Pr (see text for definitions). Also given are the model outputs Rm and Ro and a new non-dimensional parameter Raη that we
term the magnetic modified Rayleigh number. All estimates for the Earth’s core are from Christensen & Aubert (2006) except Rm from Bloxham & Jackson
(1991).

Case Ra Ek Pm Pr Rm Ro Raη

M1 3 × 105 10−3 4 1 110 2.75 × 10−2 1200
M2 1.5 × 106 3 × 10−4 2 1 96 1.44 × 10−2 900
M3 3 × 106 3 × 10−4 3 1 296 2.96 × 10−2 2700
M4 8 × 106 2 × 10−4 3 1 487 3.25 × 10−2 4800
M5 1.5 × 107 1 × 10−4 2 1 329 1.65 × 10−2 3000
M6 8 × 106 1 × 10−4 2 1 177 8.85 × 10−3 1600
M7 1.5 × 107 1 × 10−4 4 1 617 1.54 × 10−2 6000
M8 1.2 × 108 3 × 10−5 2.5 1 876 1.05 × 10−2 9000
M9 7.5 × 106 2 × 10−4 0.5 1 51 2.04 × 10−2 375
Earth 1023 5 × 10−15 2 × 10−6 0.25 500 6 × 10−6 4000

Table 3. 〈 cos γ 〉 and the ratio 〈uH 〉cal/〈uH 〉tr at the top of the free stream of the numerical dynamos. 〈uH 〉cal is the value computed using scheme (9) and
〈uH 〉tr is the true core surface flow from the dynamo model. The range, mean (μ) and standard deviation (σ ) from 10 arbitrarily sampled snapshots are given
for both quantities.

Case 〈 cos γ 〉 〈uH 〉cal/〈uH 〉tr

Range μ σ Range μ σ

M1 0.607 − 0.652 0.633 0.013 0.784 − 0.981 0.849 0.065
M2 0.615 − 0.645 0.628 0.008 0.822 − 1.273 0.962 0.127
M3 0.653 − 0.666 0.661 0.004 0.801 − 0.971 0.902 0.051
M4 0.670 − 0.685 0.677 0.005 0.930 − 1.085 0.985 0.042
M5 0.662 − 0.671 0.667 0.003 0.879 − 1.061 0.989 0.050
M6 0.636 − 0.653 0.644 0.005 0.916 − 1.277 1.026 0.097
M7 0.673 − 0.688 0.681 0.005 0.893 − 1.055 1.002 0.045
M8 0.661 − 0.671 0.667 0.003 0.877 − 1.039 0.951 0.047
M9 0.627 − 0.655 0.641 0.009 1.145 − 1.439 1.319 0.090

where Ra′ = Ra · Ek/Pr is the modified Rayleigh number often
employed in studies of rotating convection (see, e.g. Olson et al.
1999; Christensen et al. 2001). Physically, the traditional Rayleigh
number, Ra, measures the competition between buoyancy forces re-
sulting from a temperature (and hence density) difference, and the
dissipative effects of viscosity and thermal conduction. However,
in the MHD environment of the geodynamo, viscosity is expected
to be weak in the bulk of the fluid where strong magnetic fields
are also present. In this scenario a moving fluid parcel will dissi-
pate energy not through the familiar viscous effects but through
the electrical currents and concommittant Ohmic dissipation pro-
duced as it distorts magnetic field lines; conduction of heat on the
other hand continues to play a similar role as before. It thus seems
intuitively reasonable that a magnetic modified Rayleigh number
Raη, which is the modified Rayleigh number Ra′ with ν replaced
by η (in analogy to the magnetic Reynolds number where ν is re-
placed by η compared to the hydrodynamic Reynolds number), will
be of relevance in rapidly rotating, convection-driven dynamos.∗

We will show later that Raη turns out to be very useful when in-
vestigating the average amount of field-flow alignment and that it
may be related to the efficiency of induction in numerical dynamo
models.

∗ Note that Raη also arises naturally when one assumes a balance be-
tween Coriolis and buoyancy forces in the Navier–Stokes equation and
an advection–diffusion balance in the induction equation, thus it appears to
be rather fundamental to the saturated state in rapidly rotating, convection-
driven dynamos.

3.2 Synthetic tests of flow magnitude estimation scheme

One important step in the scheme outlined in Section 2 was the
assumption that the magnitudes |uH|, |∇H Br| and | cos γ | are spati-
ally uncorrelated. Before proceeding further, we first examined this
assumption with our suite of numerical dynamos. The correlation
coefficient (see, e.g. Rau et al. 2000) was computed between the
three pairs of scalar functions for each dynamo case, for each of
10 arbitrarily sampled snapshots. We found that the correlation
coefficients between the fields were usually low, indicating that
our assumption that these fields are uncorrelated is an acceptable
approximation.

Next we applied our flow magnitude estimation scheme (9)
to the dynamo models described in Table 2. 〈 cos γ 〉 can be di-
rectly obtained in numerical dynamos by calculating the rms
value of cos γ (φ, θ ) on a spherical surface just below the outer
Ekman–Hartmann boundary layer. These calculations were carried
out on the numerical grid used for the dynamo modelling. 10 arbi-
trary snapshots were used in each case to obtain the range, time-
average and standard deviation measures for each dynamo model.
The results are summarized in Table 3. A typical value of 〈 cos γ 〉 ∼
0.65 corresponds to an angle γ ∼ 50◦ between uH and ∇H Br or to
an angle of ∼40◦ between the velocity vector and a Br-contour.

Once 〈 cos γ 〉 had been estimated, the validity of the flow mag-
nitude estimation scheme was assessed using the synthetic SV pro-
duced by the numerical dynamos. This series of experiments tests
whether, despite the assumptions and approximations being made,
the method is capable of producing useful flow magnitude esti-
mates. In each dynamo model snapshot we evaluated the rms values
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Figure 1. Spatial distribution of | cos γ | from a snapshot of case M2 at the top of the free stream, values close to 0 are white while values close to 1 are black,
(top left panel); radial magnetic field at the outer boundary (top right panel); and radial vorticity at the top of the free stream (bottom panel). All maps are
centred at φ = 0◦.

〈 ∂ Br/∂t 〉 and 〈 ∇H Br 〉 at the top of the free stream. Then, using the
value of 〈 cos γ 〉 for that snapshot, we applied (9) to find the ‘cal-
culated’ magnitude of the horizontal velocity 〈uH〉cal and compared
this with the rms value of the ‘true’ horizontal velocity 〈uH〉tr. The
deviation of the ratio 〈uH〉cal/〈uH〉tr from unity quantifies the error
due to the approximations made in the flow estimation method.

The results of these tests are reported in Table 3. The errors in
the flow magnitudes detailed there quantify the combined influence
of failure of the frozen-flux assumption, the presence of poloidal
flows and departures from the assumption that the magnitudes of
|uH|, |∇H Br| and | cos γ | are uncorrelated. The average difference
between 〈uH〉tr and 〈uH〉cal, over all the cases studied, is 7.9 per
cent; in individual cases this difference varies from 0.2–32 per cent.
The generally good agreement between the true and calculated flow
magnitudes is very encouraging. Note that the results presented in
Table 3 are generally better than those achieved for the retrieval of
rms flow magnitude by conventional inversion schemes that were
previously tested on dynamo simulations (Rau et al. 2000; Amit
et al. 2007). On the basis of Table 3 we would expect (9) to yield
a flow magnitude estimate within 8 per cent of the true value,
assuming 〈 cos γ 〉 along with the MF and its SV are perfectly known;
of course in reality these conditions will not be satisfied and larger
errors should be expected.

4 F I E L D - F L OW A L I G N M E N T I N
N U M E R I C A L DY NA M O M O D E L S

4.1 Spatial distribution and physical significance of | cos γ |
Local alignment between the magnetic fields and the flow in numer-
ical models of the geodynamo was previously studied by Takahashi
& Matsushima (2005). Given its central role in our scheme, and its
potential relevance to the dynamo saturation mechanisms (Cameron
& Galloway 2006), we investigate here spatial variations of | cos γ |
and discuss the insights provided concerning induction processes at
the core surface.

In Fig. 1 we present a map of | cos γ (θ , φ)| just below the outer
Ekman–Hartmann boundary layer in a snapshot from a relatively
large-scale numerical dynamo (case M2). This case is representa-
tive of the main features found in other models which possess more
complex small-scale field and flow structures. We also present the
radial magnetic field at the outer boundary and the radial vortic-
ity just below the boundary layer. High-latitude intense flux patches
maintained by cyclonic flow structures are in general associated with
low values of | cos γ |, that is, low efficiency of induction, whereas
low-latitude field structures are often associated with higher val-
ues of | cos γ | and thus higher efficiency of induction. Zooming
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Figure 2. Zoom into a regions of low | cos γ | (top panel) and high | cos γ |
(bottom panel) from Fig. 1. Radial magnetic field (colours) and horizontal
flow (arrows) are shown.

into each of these structures reveals further details. In Fig. 2(a)
we find low values of | cos γ | at a high-latitude region where a
columnar flow structure, resulting from convection under the in-
fluence of rapid rotation, intersects the outer boundary. Cyclonic,
columnar flows involve downwelling close to the outer boundary
(Olson et al. 1999; Olson et al. 2002) with converging flow that con-
centrates radial field into characteristic intense flux bundles at the
outer boundary (Gubbins et al. 2000; Olson & Christensen 2002).
In these intense field structures, contours of Br are nearly parallel
to uH thus leading to low values of | cos γ |. In Fig. 2(a), we ob-
serve that the toroidal flow is mostly around the flux bundle, almost

parallel to Br-contours. In contrast, considering Fig. 2(b), at low-
and mid-latitudes magnetic field structures drift with the large-scale
predominantly zonal flow. For these structures the toroidal flow is
often perpendicular to Br-contours, yielding large local | cos γ | val-
ues. The nearly perpendicular relation between uH and Br-contours
in Fig. 2(b) is particularly evident at the two intense patches centred
at ∼25◦E.

In Fig. 3 we present a histogram showing the distribution of
| cos γ (θ , φ)| calculated at the dynamo model collocation grid
points; the sign of cos γ (θ , φ) is of course irrelevant to the rms
value 〈 cos γ 〉. This distribution is certainly not uniform, as might
naively have been expected if | cos γ (θ , φ)| was assumed to be a
random variable. Instead it shows two peaks, one at | cos γ | ∼ 0
(horizontal flow parallel to contours of Br), the other at | cos γ | ∼ 1
(horizontal flow perpendicular to contours of Br). The distribution
is characterized by lower occurrences for intermediate | cos γ |.
In this dynamo, for a large fraction of the core surface the field
and flow are in good alignment and hence induction is weak, see for
example, Fig. 2(a). In addition, there is a significant region where
the field and flow are nearly perpendicular and significant induction
takes place (as in Fig. 2b). It is the combined effect of regions with
slow-evolving magnetic structures maintained by columnar convec-
tion (with nearly field-aligned flow contributing to low | cos γ |), to-
gether with lower latitude regions where predominantly zonal flows
act perpendicular to field patches (giving high | cos γ |) that gives
rise to the intermediate global values of 〈 cos γ 〉 ∼ 0.65 reported in
Table 3.

We suggest that the quantity | cos γ | is a useful local diagnostic
of the induction process. Low | cos γ | corresponds to horizontal
flow nearly parallel to contours of Br and hence weak advective
SV and inefficient induction, whereas high | cos γ | corresponds to
flow nearly perpendicular to contours of Br and efficient motional
induction for a given magnitude of flow and field gradient. We
therefore term | cos γ | the ‘local induction efficiency’, and 〈 cos γ 〉
the ‘global induction efficiency’.

The dynamo models presented here are in a regime where an
α2 dynamo mechanism operates (Olson et al. 1999). We find that
consideration of the local efficiency of induction | cos γ | provides
additional insight to the working of such dynamos. The low-latitude
features are the surface manifestation of the strong stretching of
poloidal field by radial outflow between a cyclone and an anti-
cyclone. This is known to be a key ingredient in the α2 dynamo

Figure 3. Histogram of | cos γ | from the same snapshot of M2 presented in Fig. 1. The histogram was constructed using all spatial grid points used in the
dynamo calculation.

C© 2011 The Authors, GJI, 186, 175–192

Geophysical Journal International C© 2011 RAS



182 C. C. Finlay and H. Amit

Figure 4. Power-law fit to 〈 cos γ 〉 from the numerical dynamo models based on (13).

mechanism, see fig. 5 of Olson et al. (1999) and fig. 3(a) of Wicht
& Tilgner (2010). The value of | cos γ | close to 1 associated with
these features indicates efficient induction and marks their impor-
tance in the operation of the dynamo. In contrast the high-latitude
cyclonic features possess low | cos γ | and perhaps indicate surface
regions of importance for the saturation of the dynamo.

4.2 Parameter dependence and scaling of 〈 cos γ 〉
To implement the proposed scheme for estimating the flow mag-
nitude at Earth’s core surface, we need to extrapolate 〈 cos γ 〉 to
the conditions pertaining to the core. In this section, we perform a
power-law scaling analysis of 〈 cos γ 〉 from our suite of numerical
dynamo models to obtain the required estimate. Scaling approaches
have previously been successfully applied for other global diagnos-
tic properties of numerical dynamos (Christensen & Tilgner 2004;
Christensen & Aubert 2006; Olson & Christensen 2006; Chris-
tensen 2010). Since Pr is thought to have a similar value in the
numerical dynamo models and in the Earth’s core, we consider the
variation of 〈 cos γ 〉 as a function of Ek, Ra and Pm, beginning with
a general power law of the canonical form,

〈cos γ 〉 = C1Rax1 Ekx2 Pmx3 , (12)

where C1 is a constant pre-factor and xi are powers. The best fitting
result gives small positive values (less than 0.1) for all three powers,
indicating that 〈 cos γ 〉 depends only very weakly on the control
parameters. Furthermore, the similarity in the values of x1, x2 and x3

suggests that the scaling may be governed by a simpler power law
of the form,

〈cos γ 〉 = A(Raη)x (13)

where Raη is the magnetic modified Rayleigh number (11) and A
is a constant. The best least-squares fit using law (13) occurs with
A = 0.55 and x = 0.023 (Fig. 4) and was found to be almost as
successful a fit with the more general power law (12).

The physical implication of (13) is that the global efficiency of
induction 〈 cos γ 〉 is largely controlled by the magnetic modified
Rayleigh number Raη. Recall that Raη is identical to the modified
Rayleigh number Ra′ except that magnetic diffusivity substitutes for

the viscosity. It therefore measures how strongly the system is being
forced by convection (against the influence of rotation) compared to
how rapidly energy can be lost by Ohmic dissipation. For the Earth’s
core Raη ∼ 4000 is well within the range we have explored with
numerical dynamos (Table 2); this indicates that present numerical
dynamo models may already capture in a reasonable manner the
global efficiency of induction (degree of field-flow alignment) at
their outer surface. The dependence on Raη furthermore suggests
that a trade-off must exist between the effects of more vigorous
convection and stronger magnetic diffusion as an earth-like regime
is approached. The effect of stronger driving (which will increase
Raη and hence increase 〈 cos γ 〉) together with stronger magnetic
dissipation (which will tend to decrease 〈 cos γ 〉) are predicted to
combine to produce moderately efficient global induction charac-
terized by an intermediate value of 〈 cos γ 〉 � 0.65, at least for
dipole-dominated non-reversing dynamos of the type studied here.
For the flow magnitude estimation scheme the most important as-
pect of (13) is that 〈 cos γ 〉 depends only extremely weakly on Raη;
this gives us hope that inferences from the numerical dynamos in-
vestigated here may provide useful prior information for estimates
of the flow magnitude in the Earth’s core.

Substituting the values of the control parameters expected for
the Earth’s outer core (see Table 2) into power law (13) leads to
a predicted value of 〈 cos γ 〉 � 0.666; this is shown in Fig. 4 as
the pink star. Note that in the construction of our power law we
did not impose that the value of 〈 cos γ 〉 for the Earth’s core must
lie in the range 0–1. This was achieved naturally from the very
weak dependence of 〈 cos γ 〉 on the control parameters and the
trade-off between increasing 〈 cos γ 〉 with increasing Ra, and de-
creasing 〈 cos γ 〉 with decreasing Pm towards earth-like conditions.
Given the uncertainties in the control parameters for the Earth’s
core, and possible errors in the scaling law due to the small number
of dynamo models studied, we henceforth adopt a (rather large)
range 〈 cos γ 〉 = 0.65 ± 0.05 as being appropriate for the Earth’s
core. Note that the standard deviations in Table 3 suggest variations
of ∼ ±0.05 are in any case associated with the time-dependence
of the dynamo process, so consideration of a range of values
〈 cos γ 〉 = 0.6–0.7 seems prudent.
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5 F L OW M A G N I T U D E E S T I M AT E S AT
E A RT H ’ S C O R E S U R FA C E

In this section we present results of the application of the scheme
set out above to geomagnetic observations, and provide new esti-
mates for the flow magnitude at Earth’s core surface. We begin by
applying the method to the large-scale MF and SV derived from
high-quality observations performed by the Ørsted, CHAMP and
SAC-C satellites as encapsulated by the xCHAOS model of Olsen
& Mandea (2008). We also quantify how uncertainty in 〈 cos γ 〉
affects our flow magnitude estimates. The method is next applied
to the MF and SV between 1840 and 1990 from the field model
gufm1 of Jackson et al. (2000). This enables variations in the flow
magnitude over the historical era to be determined. We conclude by
exploring possible spectral extrapolations of the observed MF and
SV which permit investigation of the influence of unobserved small
scales on flow magnitude estimates.

5.1 Core flow magnitude estimates from the observed
large-scale MF and SV

An estimate of the core flow magnitude is obtained using (10),
the spectra of the MF, Rl and the spectra of the SV, Ql, at the core
surface from the xCHAOS model (Olsen & Mandea 2008) evaluated
in epoch 2004.0. We truncate the field model at degree L = 10
because above this level there are discrepancies among core surface

SV models produced by different authors (Gillet et al. 2010), and
because unwanted crustal field may already significantly contribute
to the MF signal by degree L = 12. We also tested our scheme
using the GRIMM field model (Lesur et al. 2008) also truncated at
degree 10; the results obtained were essentially identical to those
reported here. Fig. 5 shows Br and ∂ Br/∂t from xCHAOS at the core
surface in 2004.0 as used for the calculations reported here. Based
on the estimate of 〈 cos γ 〉 = 0.65 from scaling law (13) applied
to the Earth’s core, we obtain the result 〈uH 〉 =12.5 km yr−1, well
within the range of conventional core flow magnitude estimates (see
Table 1).

5.2 Impact of uncertainty in field-flow alignment factor
〈cos γ 〉
Fig. 6 shows how estimates of 〈uH〉 derived from the xCHAOS MF
and SV models in 2004.0 change as 〈 cos γ 〉 varies. For the extreme
(and physically implausible) but formally limiting case of a core
surface flow that is everywhere perpendicular to Br-contours, that
is 〈 cos γ 〉 = 1, we obtain a lower bound for the large-scale flow
magnitude of 〈uH〉 = 8.15 km yr−1. This is a formal lower limit
given the assumptions inherent in our method; however it is very
unlikely that such extreme flow-field alignment exists in the Earth’s
core and none of the numerical dynamo models studied possess
such a high 〈 cos γ 〉 value.

Figure 5. Radial magnetic field Br in μT at the core–mantle boundary (top panel) and its secular variation ∂ Br/∂t in μT yr−1 (bottom panel) from the
xCHAOS model of Olsen & Mandea (2008) in 2004.0 truncated at degree L = 10.
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Figure 6. Variation of core surface flow magnitude 〈uH 〉 determined from xCHAOS truncated at degree L = 10, as a function of 〈 cos γ 〉.

In the opposite limit of horizontal flow along Br-contours (field-
aligned flow) for which 〈 cos γ 〉 = 0, there is a singularity in (10).
Infinite 〈uH〉 is thus predicted if the flow were entirely along con-
tours of Br at the core surface. In that case no SV could be produced
and all flow estimation methods based on frozen-flux inversion of
SV will fail. However, a perfectly field-aligned flow also seems im-
probable and none of the numerical dynamo models we investigated
suggest such a relation. Consideration of the range of 〈 cos γ 〉 =
0.65 ± 0.05 leads to a range of core surface flow magnitudes 〈uH〉
of 11.6–13.6 km yr−1 (see Fig. 6). The very weak dependence of
the result on the value of 〈 cos γ 〉 gives confidence in the inferred
flow magnitude.

5.3 Temporal variations in flow magnitude

To investigate temporal fluctuations in the rms flow magnitude,
we applied our method to the gufm1 historical core field model
(Jackson et al. 2000) at yearly intervals between 1840.0 and 1990.0
with 〈 cos γ 〉 = 0.65. Fig. 7 shows the results with gufm1 truncated at
L = 8 and 10. For comparison we also present the rms flow variations
determined by Amit & Olson (2006) using a full flow inversion
of gufm1 truncated at degree L =14 (see the orange dashed line).
Both techniques show similar variations in flow magnitude with the
maximum amplitude occurring close to 1915. The same general
pattern was also found by Jackson (1997) using his fully time-
dependent, tangentially geostrophic flow inversion (see his fig. 4a).

It is noteworthy that the maximum in core flow magnitude in 1915
coincides with a maximum in the observed change in the length of
day at the same time (see fig. 11 of Jackson 1997). Furthermore,
the subsequent decrease in flow magnitude until around 1940, the
increase from 1950 until 1970 and the weak decrease towards 1990
also follow the general trends in the observed change in the length
of day over the past century (Jackson et al. 1993). The variations
we find in flow magnitude are therefore qualitatively consistent
with independent geodetic observations of the decadal changes of
flow magnitude in the Earth’s core. We therefore conclude that
our approach is a feasible method for monitoring rms temporal
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Figure 7. Core flow magnitude estimates based on the historical core field
model gufm1 (Jackson et al. 2000) between 1840.0 and 1990.0, assuming
〈 cos γ 〉 = 0.65 and using two possible truncation levels (black line is L = 8,
red line is L = 10). Also presented is the time-dependent rms flow of Amit
& Olson (2006) from a full flow inversion of the same historical field model
(dashed orange line).

variations of core flow magnitude on decadal timescales that avoids
some of the complications associated with full core flow inversions.
Excluding the low flow magnitudes prior to 1870, which should
probably be interpreted with caution since the field models from
this period are based on less comprehensive data, we find here that
flow magnitudes varied by 3 km yr−1 or ∼25 per cent over several
decades.

The main difference between our results and those of Amit &
Olson (2006) is that our flow magnitudes are 0–4 km yr−1 slower. A
possible reason for this discrepancy is that our estimate of the field-
flow alignment parameter 〈 cos γ 〉 is too large (see Fig. 6). However,
the precise rms magnitudes obtained in flow inversions are known
to rely heavily on prior assumptions (e.g. choice of damping param-
eters) not necessarily related to the underlying physics. An example
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of this is given in fig. 4(a) of Jackson (1997) where a change of the
regularization parameter alters the rms magnitude of the inferred
core flow by 5–10 km yr−1, with results particularly sensitive before
1960 when the data constraints are weaker. Similarly, the magnitude
of the helical flow inferred by Amit & Olson (2006) and plotted in
Fig. 7 depends on an assumed ratio for the horizontal divergence to
the radial vorticity of the flow.

Note that the temporal variation of the flow derived from gufm1
(Fig. 7) is slightly lower (9–12 km yr−1) than our earlier estimate
of the core flow magnitude of ∼12.5 km yr−1 based on xCHAOS
(Fig. 6). The reason for this is that the historical field model gufm1
has lower spatial resolution (especially for SV) than the xCHAOS
model, with regularization often dominating even below degree 10.
The degree to which we can obtain reliable knowledge concern-
ing the core MF and its SV obviously plays an important role in
estimates of core flow magnitude. We explore this issue further in
the next section.

5.4 Accounting for unresolved small scales

A major uncertainty in applying our method, or any other core flow
inversion technique, is that observational knowledge consists only
of a spatially low-pass filtered version of the core surface field and
its temporal evolution. The origin of this low-pass filter lies in the
presence of noise from non-core magnetic sources, in particular
crustal magnetization, as well as ionospheric or magnetospheric
currents. This problem has been discussed in detail by Hulot et al.
(1992), and more recently by Eymin & Hulot (2005), Pais & Jault
(2008) and Gillet et al. (2009), who describe how to account for
the interactions of unobserved small-scale field with large-scale
flow, and small-scale flow with large-scale field, when inverting
large-scale SV to obtain maps of the large-scale flow. Because (10)
requires only the MF and SV spectra as inputs, it is possible to
systematically study the impact of unobserved small scales on flow
magnitude estimates by exploring possible spectral extrapolations;
this avenue is not possible for conventional core flow inversions.

Here we explore three possible spectral extrapolations of the MF
at the core surface r = c. The first was proposed by Roberts et al.
(2003) as being compatible with the magnetic spectra obtained in
numerical dynamo models, while also satisfying the observed large-
scale geomagnetic spectrum. It takes the exponential form

RR
l (c) = C2e−Bl , (14)

with B = 0.055. This produces a spectrum similar to that obtained
in the high-resolution numerical dynamo model studied by Roberts
& Glatzmaier (2000). The constant C2 is determined, following
Lowes (1974) and Roberts et al. (2003), by fitting the observed
magnetic spectrum for l ≥ 3 with the dipole and quadrupole terms
excluded to obtain a better fit to higher degrees. Hereafter we refer
to spectrum (14) as RJC03.

The second spectral extrapolation considered is based on a sta-
tistical model of compact eddies motivated by scaling arguments of
a magnetostrophic vorticity balance at the core surface (Voohries
et al. 2002; Voohries 2004). As explained by Voohries (2004), it is
the generalization of a spectral form earlier proposed by Stevenson
(1983) on the basis of the theory of turbulence expected for a heli-
cal dynamo, and it was also suggested by McLeod (1996) from the
point of view of a stochastic model of scattered dipole sources at
the core surface. It takes the form

RV
l (c) = K

(l + 1/2)

l(l + 1)

( cs

c

)2l+4
, (15)

where K is a constant determined by fitting the observed magnetic
spectrum. We simplify this model by setting the source radius pa-
rameter cs to the seismologically determined value of the core radius
c. Hereafter we refer to spectrum (15) as V04.

The third spectral extrapolation considered is another version of
the classic power-law form originally proposed by Lowes (1974).
It was recast by Buffett & Christensen (2007) with the purpose of
satisfying not only magnetic observations, but also geodetic con-
strains related to nutations, as well as Ohmic heating requirements.
They argued that the following spectral form represents a plausi-
ble extrapolation of numerical dynamo model results towards an
earth-like regime.

RB
l (c) = R̄χ l , (16)

where R̄ is a constant determined by fitting the non-dipole part of
the observed spectrum and χ = 0.99 is fixed to ensure there is suf-
ficient power at short wavelengths to explain nutation observations
(for further details see Buffett & Christensen 2007). Although the
previous spectral form (14) can be rewritten in the same format as
(16), the latter is more restricted as it contains only one free param-
eter, and forces a very flat spectrum. Note that this extrapolation is
less extreme than the completely flat spectral extrapolation recently
discussed by Jackson & Livermore (2008). We refer to spectrum
(16) as BC07.

To compute 〈uH〉 from (10), one requires not only Rl(c) but
also the spectra of the SV at the core surface, Ql(c). We obtain
Ql(c) from Rl(c) by assuming that the ratio between the MF and
SV spectra, which physically represents a reorganization time for
length scales associated with spherical harmonic degree l (Stacey
1992; Hulot & LeMouël 1994),

τl =
√

Rl (c)

Ql (c)
(17)

can be adequately modelled by the power law

τl = C3l−D, (18)

where the constants C3 and D are determined by an empirical fit to
the observed large-scale MF and SV. Holme & Olsen (2006) and
Olsen et al. (2006) have discussed this empirical law in some detail
and have argued that it may reflect the trade-off between advection
and diffusion of the magnetic field occurring at all length scales.
Substituting (18) into (17) we obtain

Ql (c) = Rl (c)

(C3l−D)2
. (19)

We determined the free parameters in the various spectral ex-
trapolations C2, K , R̄, C3 and D by least-squares fits to the satel-
lite observation-based xCHAOS MF and SV spectra up to degree
10. For the RJC03 spectrum (14), the best fit for l ≥ 3 was ob-
tained with C2 = 1.22 × 1010 nT2, for V04 (15) with K = 6.97 ×
1010 nT2, for the BC07 spectra (16) the best fit to the non-dipole
field was obtained with R̄ = 9.20 × 109 nT2, while in (18) C3 =
778.87 yr and D = 1.33 give the best fit to the ratio of xCHAOS MF
and SV spectra up to degree L = 10. The resulting extrapolations
of the MF and SV spectra up to degree L = 1000 are presented in
Fig. 8.

Using these spectral extrapolations, our preferred value of
〈 cos γ 〉 = 0.65, and (10), we explored 〈uH〉 as a function of the
truncation level L. The results of these computations are presented
in Fig. 9. We find that for all three spectral extrapolations 〈uH〉
increases with L, with equal predicted magnitudes of ∼22 km yr−1

C© 2011 The Authors, GJI, 186, 175–192

Geophysical Journal International C© 2011 RAS



186 C. C. Finlay and H. Amit

Figure 8. Top panel: Lowes–Mauersberger spatial power spectra of the MF at the core surface from the xCHAOS model (Olsen & Mandea 2008) in 2004.0
(black diamonds) and the fit of three possible extrapolations (RJC03: blue line, V04: green line, BC07: red line) extending out to spherical harmonic degree
1000. Bottom panel: Extrapolated spectra for the SV based on (19) and the respective MF spectra.

reached by L = 40. The predictions of the different extrapola-
tions begin to differ markedly above L = 60. For L > 150 the
prediction of RJC03 reaches an asymptotic value of 29 km yr−1.
The extrapolations V04 and BC07 are practically identical un-
til L = 200, where 〈uH〉 ∼ 41 km yr−1. For larger L the pre-
dictions of BC07 and V04 diverge, with V04 growing exponen-
tially, while BC07 reaches an asymptotic value of ∼56 km yr−1 for
L > 1000.

Fig. 10 summarizes a large number of calculations focusing on the
BC07 extrapolation and exploring a very wide range of values for
both 〈 cos γ 〉 and the truncation degree L. It should however be re-
membered that Buffett & Christensen (2007) argued their spectrum
is capable of satisfying geodetic constraints derived from nutation
observations, while remaining compatible with Ohmic heating con-
straints, only for a truncation degree in the range 160 < L < 250.
More generally, Fig. 10 shows that to obtain flow speeds in excess
of 60 km yr−1, with the BC07 spectral extrapolation, it is necessary
for 〈 cos γ 〉 to be less than 0.6. Flow speeds are always less than

50 km yr−1 if 〈 cos γ 〉 lies between 0.4 and 0.8 and the truncation
degree is less than 100.

What truncation degree L, above which magnetic dissipation
dominates and the magnetic spectrum decays, is appropriate for
the Earth’s core? Unfortunately the Ohmic dissipation scale in
the Earth’s core is not known. Christensen & Tilgner (2004), in
a study of scaling laws in numerical and experimental dynamos,
concluded that a magnetic dissipation time of 42 yr was appro-
priate for the Earth’s core. This corresponds to a length scale of
Ldiss ∼ 50 km (see also Buffett & Christensen 2007) or a spheri-
cal harmonic degree L = π D/Ldiss ∼ 150. Beyond this dissipation
scale, magnetic diffusion is expected to dominate SV, the frozen-flux
approximation fails and our method would become inapplicable. As
can be seen from Fig. 9, taking L = 150 leads to predictions of
〈uH〉 ∼ 29 km yr−1 from the RJC03 extrapolation, 38 km yr−1

from the BC07 extrapolation and 37 km yr−1 from the V04 ex-
trapolation, all with 〈 cos γ 〉 = 0.65. For upper estimates obtained
using 〈 cos γ 〉 = 0.60 and L = 250 (equivalent to a dissipation
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Figure 9. Estimates of the core flow magnitude 〈uH 〉 as a function of spherical harmonic degree of truncation L of the MF and SV for the spectral extrapolations
of BC07 (red), V04 (green) and RJC03 (blue).

Figure 10. Colour scale plot of the predicted flow magnitude 〈uH〉 in km yr−1 at the core surface, accounting for the effect of unobserved small scales, derived
from (10) for a wide range of 〈 cos γ 〉 between 0.4 and 0.8 and using the observed spectra from xCHAOS in 2004.0 (to degree L = 10) extrapolated up to L =
1000 using BC07 form (16) and the assumption that (19) holds for the SV spectrum.

scale ∼30 km), RJC03 predicts a flow magnitude of 31 km yr−1,
BCO7 predicts 48 km yr−1 while V04 predicts a similar ampli-
tude of 49 km yr−1. Rounding to 50 km yr−1 gives what we take
to be an upper estimate for the plausible magnitude of flow at the
Earth’s core surface, accounting for the influence of unobserved
small scales. Note that for almost flat MF spectra such as BC07 and
V04 having L much larger than 250 will produce more Ohmic heat-
ing than is thought to be reasonable. Readers should bear in mind
that our upper estimate of 50 km yr−1 depends both on the spectral
extrapolations employed and on the assumed magnetic dissipation
scale for the Earth’s core, so it is not a formal upper bound.

6 D I S C U S S I O N

The intermediate value of 〈 cos γ 〉 = 0.6–0.7 suggested by scaling
law (13) for the Earth’s core, indicates a combined influence of
regions of field-aligned flow near high-latitude intense flux patches
[as also seen in numerical dynamos with tomographic outer bound-
ary heat flux (Amit et al. 2010)] and mid- to low-latitude regions
where flow is more often perpendicular to Br-contours. This degree
of field-flow alignment is compatible with earlier helical core flow
inversions which reported a ratio of 1.2–1.4 between the flow par-
allel and the flow perpendicular to Br-contours, corresponding to
〈 cos γ 〉 ∼ 0.58–0.64 (Amit & Olson 2004; Amit & Olson 2006).
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Table 4. Estimates of non-dimensional parameters for the Earth’s core. The flow magnitude is calculated with and without spectral extrapolation, for two
choices of field-flow alignment factor (for 〈 cos γ 〉 = 0.6 and 0.7), and for various choices of field and flow length scales. In the extrapolated cases, the flow
length scale is taken to be that of the maximum in the SV spectrum so that Lu = π D/LSVmax, unless this is below the dissipation length scale defined by the
truncation degree Ldiss = π D/L , in which case Lu = Ldiss. Here D is the shell thickness which is 2260 km for the Earth’s core. Three choices for LB are
considered. These are Lh

B (1000 km as associated with the large-scale observed magnetic field), Lh′
B (the same as Lu ) and Lr

B (based on a radial length scale
of 40 km for the magnetic diffusive boundary layer). All results are reported to two significant figures. A magnetic diffusivity for the Earth’s core of 1 m2 s−1

and a rotation rate of � = 7.3 × 10−5 s−1 have been used. Conventional estimates for Ro and Rm using Lh
B are highlighted in bold.

Sph. harm. Ldiss 〈uH 〉 Lu Lh
B Lh′

B Lr
B Ro Rm Rm′ Rmr Rm′

r

Extrap. Trunc. Deg L (km) 〈 cos γ 〉 (km yr−1) (km) (km) (km) (km) 〈uH 〉
�Lu

〈uH 〉Lh
B

η

〈uH 〉Lh′
B

η

〈uH 〉(Lr
B )2

ηLh
B

= 〈uH 〉(Lr
B )2

ηLh′
B

None 10 1000 0.7 11 1000 1000 40 4.9 × 10−6 350 0.55
None 10 1000 0.6 14 1000 1000 40 6.1 × 10−6 440 0.71
RJC03 150 48 0.7 27 160 1000 160 40 7.3 × 10−5 860 140 1.4 8.6
RJC03 150 48 0.6 31 160 1000 160 40 8.4 × 10−5 980 160 1.6 9.8
RJC03 250 28 0.7 27 160 1000 160 40 7.3 × 10−5 860 140 1.4 8.6
RJC03 250 28 0.6 31 160 1000 160 40 8.4 × 10−5 980 160 1.6 9.8
BC07 150 48 0.7 35 48 1000 48 40 3.2 × 10−4 1100 53 1.8 37
BC07 150 48 0.6 41 48 1000 48 40 3.7 × 10−4 1300 62 2.1 43
BC07 250 28 0.7 41 30 1000 30 40 5.9 × 10−4 1300 39 2.1 69
BC07 250 28 0.6 48 30 1000 30 40 4.9 × 10−4 1500 46 2.4 81
V04 150 48 0.7 35 48 1000 55 40 3.2 × 10−4 1100 53 1.8 37
V04 150 48 0.6 40 48 1000 55 40 3.6 × 10−4 1300 61 2.0 42
V04 250 28 0.7 42 28 1000 30 40 6.5 × 10−4 1300 37 2.1 71
V04 250 28 0.6 49 28 1000 30 40 7.6 × 10−4 1600 44 2.5 89

The estimate of 〈uH〉 = 11–14 km yr−1, derived from (10) using
the xCHAOS MF and SV without any spectral extrapolation, using
the range 〈 cos γ 〉 = 0.6–0.7 inferred from numerical dynamo mod-
els, also lies well within the range of flow magnitudes reported in
previous studies (see Table 1). Temporal variations in flow magni-
tude inferred from investigations with the MF and SV from gufm1
were further found to be in qualitative agreement with fluctua-
tions previously inferred in full flow inversions of SV (Jackson
1997; Amit & Olson 2006), and with geodetic inferences of
changes in the length of day. These agreements give confidence
that the approach presented here is sensible, encouraging us to
explore its implications when extrapolated to unobserved length
scales.

We have demonstrated that 〈uH〉 could conceivably be as large
as 50 km yr−1, depending on details of the unobserved MF and
SV spectra, and on the length scale at which dissipation forces
the magnetic spectrum to decay. This upper estimate is notably
higher than previous estimates of the core flow magnitude (see
Table 1). The source of the discrepancy is that we have explicitly
quantified the influence of unobserved small scales which were
inaccessible in previous studies. On the other hand, for 〈uH〉 to
be larger than 50 km yr−1, either 〈 cos γ 〉 must be less than 0.6
(unlikely according to the dynamos we have studied), the magnetic
spectra must be flatter and contain more power at small scales than
either the BC07 or V04 spectra (though these spectra are already
very flat compared to most existing numerical dynamos), or the
magnetic dissipation scale in the Earth’s core must be considerably
less than the minimum length scale of 30 km that we have considered
(probably unlikely from Ohmic heating considerations, see Buffett
& Christensen 2007; Christensen 2010). We therefore propose that
50 km yr−1 is a defensible, if rather extreme, upper estimate of how
strong flow in the Earth’s core could possibly be.

It should however be emphasized that 50 km yr−1 is in our opinion
a rather extreme upper estimate of the magnitude of the core surface
flow. The actual value of 〈uH〉 could be considerably less than
50 km yr−1, and may in fact lie closer to our initial estimate of

〈uH〉 ∼ 11–14 km yr−1 derived from the observed MF and SV
without any extrapolation. The latter scenario would require that the
magnetic energy spectrum in the Earth’s core decays much more
rapidly than in BC07 model and that there is an alternative coupling
mechanism to enable the geodetic constraints to be satisfied (see,
e.g. Deleplace & Cardin 2006). It is noteworthy that in many low
Pm MHD systems the magnetic energy spectrum has its dissipation
scale at larger length scales (at smaller L) than the kinetic energy
spectrum (Ponty et al. 2004; Schaeffer & Cardin 2006; Takahashi
et al. 2008; Brandenberg 2009).

We now use our estimates of 〈uH〉 to compute the non-
dimensional parameters Rm, Rmr and Ro that give valuable insight
into the dynamic and kinematic regimes in the Earth’s core. In
Table 4 we explore a range of estimates of these parameters based
on conceivable values for 〈 cos γ 〉 and possible length scales of the
field and flow at the core surface. Precise definitions of the parame-
ters and details concerning the choices of length scales are provided
in the table caption.

With 〈uH〉 = 11–14 km yr−1 and taking Lu = Lh
B = 1000 km

we obtain conventional estimates of Rm ∼ 350–440 and Ro ∼
5–6 × 10−6 in agreement with previous studies. By considering the
range of alternative estimates for these non-dimensional numbers
presented in Table 4 one can, however, see that the assumptions
made concerning the unobserved small scales of the field and flow
are critical; nonetheless some general conclusions may be drawn.

A first conclusion is that given the range of 〈 cos γ 〉 ∼ 0.6–0.7,
and exploring the three possible extrapolations of the MF and SV
with two choices of truncation degree, the magnitude of the core
surface flow 〈uH〉 is found to lie in the range 27–50 km yr−1. Note
that for a wider range of 〈 cos γ 〉, the range of flow magnitudes is
simply linearly stretched. For example, with 〈 cos γ 〉 = 0.55–0.75
a revised flow magnitude range of 〈uH〉 = 25–55 km yr−1 is
obtained.

Using our favoured range of 27–50 km yr−1, if a length scale of
1000 km is adopted for the horizontal magnetic field, then Rm lies
in the range 350–1600. Instead assuming that the horizontal length
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scale of the magnetic field is the same as that of the velocity field
(thus taking into account smaller scales), we find Rm′ is consider-
ably smaller, in the range 37–160. Assuming a radial length scale
of 40 km associated with the magnetic diffusion boundary layer
[the estimate of Chulliat & Olsen (2010) with η = 1 m2 s−1], and
adopting a large horizontal length scale of 1000 km, then Rmr is
found to lie in the range 0.5–2.5. This indicates that radial mag-
netic diffusion could become comparable to magnetic advection
in some locations. Accounting for both radial magnetic diffusion
and assuming a small horizontal length scale for the magnetic field
gives Rm′

r of 8–90 suggesting that magnetic advection generally
dominates, though diffusive effects may be more important than is
commonly assumed. This scenario agrees with inferences from a
study of numerical dynamos (Amit & Christensen 2008) and with
the conclusions of some studies of observed geomagnetic field evo-
lution (Bloxham & Gubbins 1986; Chulliat & Olsen 2010).

Regarding the Rossby number, we find 5 × 10−6 < Ro < 8 ×
10−4, that is, inertia is always very small compared to the Coriolis
force, even when the influence of small-scale flows is considered.
For comparison, the historical time-variations in the flow magni-
tude inferred in Section 5.3 permit an order of magnitude estimate
of the flow accelerations |∂u/∂t | compared to the Coriolis acceler-
ation |� × u|. Changes in the core flow magnitude of 25 per cent
over an interval of 40 yr as found in Fig. 7 lead to an estimate of
Ro ∼ |∂u/∂t |/|� × u | ∼ 1 × 10−5. This agrees well with the esti-
mate of 2 × 10−5 previously obtained by Olsen & Mandea (2008)
who derived core flow maps from satellite geomagnetic observa-
tions. It is noteworthy that even if one adopts our largest estimate of
the Rossby number, the effects of inertia are still more than factor
100 smaller than the critical (local) Rossby number that is proposed
as the transition point between non-reversing to reversing dynamos
(Olson & Christensen 2006; Christensen 2010).

When evaluating the above results one should remember that our
flow magnitude estimation scheme involves a number of assump-
tions, and has some fundamental limitations. First, it was assumed
from the outset that frozen-flux is a good approximation on aver-
age, and that toroidal flows dominate at the core surface. Secondly,
the inferred values for 〈 cos γ 〉 were derived from a limited suite
of numerical dynamo models whose control parameters were re-
stricted by the available computing power. Thirdly, the form and
truncation level of the spectral extrapolations of the MF and SV
remain uncertain; we have simply explored some possible scenar-
ios. Fourthly, the methodology is restricted to the study of flow at
the surface of the core and cannot probe the flow within the vol-
ume of the outer core, unless further assumptions are made. Ideally
estimates of the flow within the volume would enter into Ro and
Rm. For the suite of numerical dynamo models we have studied, the
ratio between the magnitude of the flow at the core surface and that
averaged over the volume of the outer core takes values between
1.16 and 1.27 with no obvious dependence on control parameters
(see also Christensen & Aubert 2006), so it is unclear how to accu-
rately infer volumetric flow magnitude from surface flow. Finally,
there remains some uncertainty in the exact value of the magnetic
diffusivity with published values ranging between 1 and 3 m2s−1

(Secco & Schloessin 1989; Poirier 2000; Stacey & Loper 2007).
Despite these limitations, the scheme we have presented performed
well in synthetic tests, is consistent with the large-scale estimates of
previous studies, and enables one to quantify the effects of small-
scale field and flow on core flow magnitude estimates. The inferred
values of Ro and Rm for the Earth’s core therefore provide use-
ful guidance concerning the dynamic and kinematic regimes of the
geodynamo.

7 C O N C LU D I N G R E M A R K S

A new approach for estimating the rms flow magnitude 〈uH〉 at
Earth’s core surface has been presented and validated using numer-
ical dynamo models. The method is capable of accounting for both
field-aligned flow and unobserved small scales. We estimate that
〈uH〉 lies within the range 11–50 km yr−1. The lower estimate of
11 km yr−1 comes from considering only the part of the flow that
can be constrained by geomagnetic observations (i.e. it involves no
spectral extrapolation) and it is in agreement with previous esti-
mates. The upper estimate of 50 km yr−1 is not a hard bound, but
is an extreme scenario consistent with the observed geomagnetic
spectrum and with presently available numerical dynamo models.
Study of field-flow alignment in numerical dynamos has revealed
that in the vicinity of high-latitude convective rolls the field and the
flow are well aligned resulting in low induction efficiency there. At
lower latitudes zonal flow can often be perpendicular to contours of
Br, leading to efficient induction and enhanced SV in these regions.

Applications of the method presented here need not be restricted
to Earth’s core. Similar schemes could be applied to any MHD
system with sufficiently high Rm, so that the majority of the field
evolution occurs by a frozen-flux induction mechanism, and where
toroidal flow dominates close to the outer boundary. To obtain the
required prior knowledge concerning 〈 cos γ 〉, sufficient numerical
dynamo model runs with appropriate geometry, kinematics and (as
far as possible) force balance, do however need to be carried out.
Finally sufficient high-quality observations of the magnetic field
and its temporal variability must be available to determine the MF
and SV spectra.

One possible future application could be to monitor the magni-
tude of flow in the cores of other planetary bodies. For example,
terrestrial planets or solid-ice satellites generating planetary scale
magnetic fields (such as Mercury or Ganymede) could be feasible
subjects. The method could also perhaps be applied to rotating MHD
experiments carried out in a spherical geometry to study dynamo
action or magnetostrophic dynamics (Cardin & Brito 2007), if these
are monitored using magnetic observations. It is very difficult to di-
rectly observe fluid motions in liquid metals by visual means, due to
their opacity, and doppler ultrasonic measurements are challenging
and give only local estimates (Brito et al. 2001). A possible ob-
stacle may be the requirement that field evolution occurs primarily
by frozen-flux advection; existing experiments typically have Rm
not much greater than 1, so it is unclear whether the frozen-flux
hypothesis is a reasonable approximation even on short timescales.
It would however be of great interest to test the method directly
using a controlled natural system, rather than relying on synthetic
tests with numerical dynamo models.

According to our new upper estimate for the flow magnitude in
the Earth’s core of 50 km yr−1, it is no longer reasonable to argue
that unquantified field-aligned and small-scale flows permit flow
magnitudes many orders of magnitudes larger than the traditional
estimates of 10–20 km yr−1. To obtain more refined estimates, a
better understanding of the factors controlling the unobserved part
of the MF and SV spectra is required. Further study of field-flow
alignment in numerical dynamo models spanning a wider range of
control parameters, including investigation of regions within the
volume where dynamo action takes place, may also provide fresh
insight to the nature of the geodynamo process.
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A P P E N D I X : T H E F L OW M A G N I T U D E
E Q UAT I O N I N S P E C T R A L F O R M

Assuming a source free region, the geomagnetic field due to internal
sources can be represented in terms of the gradient of a magnetic
potential B = −∇ � such that

� =
∞∑

l=1

l∑
m=0

�m
l =

∞∑
l=1

l∑
m=0

a
(a

r

)l+1 [
gm

l (t) cos mφ

+ hm
l (t) sin mφ

]
Pm

l (cos θ ), (A1)

where �m
l are the spherical harmonic constituents of the scalar

potential, r is the radius in kilometres, a is the spherical ref-
erence radius of the Earth’s surface (6371.2 km), θ is co-
latitude, φ is longitude, Pm

l (cos θ ) are associated Legendre
polynomials of degree l and order m and gm

l (t) and hm
l (t)

are the Gauss coefficients that define the field morphology at
time t.
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Following Mauersberger (1956) and Lowes (1966), the rms value
of the vector field B on a spherical surface of radius c can be written
as

〈B〉 =
√√√√ ∞∑

l=1

Rl (c), (A2)

where

Rl (c) = (l + 1)
(a

c

)2l+4 l∑
m=0

[(
gm

l

)2 + (
hm

l

)2]
(A3)

is commonly referred to as the Mauersberger–Lowes spectrum. It
indicates how the magnetic energy varies as a function of l at radius
c. In the present context it is of interest to note that the rms value of
Br averaged over a sphere of radius c may also be written in terms
of Rl(c) as

〈Br 〉 =
√√√√ ∞∑

l=1

(l + 1)

(2l + 1)
Rl (c). (A4)

A similar expression can also be written for the rms radial SV at
r = c,

〈∂ Br/∂t〉 =
√√√√ ∞∑

l=1

(l + 1)

(2l + 1)
Ql (c), (A5)

where

Ql (c) = (l + 1)
(a

c

)2l+4 l∑
m=0

[
(ġm

l )2 + (ḣm
l )2

]
, (A6)

with ġm
l (t) and ḣm

l being the spherical harmonic coefficients of the
SV.

It is also possible to directly obtain an expression for the rms
values of ∇H Br on a spherical surface (where ∇H = ∇ − ∂

∂r r̂) as
follows. First note than one can write ∇H Br in terms of the spherical

harmonic constituents of the scalar potential �m
l as,

∇H Br =
∞∑

l=1

l∑
m=0

(l + 1)

r
∇H �m

l . (A7)

Then, as demonstrated by Lowes (1966) (see his eqs 4 and 5), the
mean square value of the non-radial part of the gradient of the scalar
potential on a spherical surface of radius r is

1

4π

∫ 2π

0

∫ π

0
(∇H �m

l ) · (∇H �m
l ) sin θ dθ dφ =

(a

r

)2l+4 l(l + 1)

(2l + 1)

× [(
gm

l

)2 + (
hm

l

)2]
.

(A8)

The rms value of ∇H Br on the spherical surface r = c is then

〈∇H Br 〉 =
√√√√ ∞∑

l=1

l(l + 1)3

c2(2l + 1)

(a

c

)2l+4 [(
gm

l

)2 + (
hm

l

)2]

=
√√√√ ∞∑

l=1

l(l + 1)2

c2(2l + 1)
Rl (c).

(A9)

Taking c to be the radius of the Earth’s core, and substituting
(A5) and (A9) into (9) gives an expression for the rms value of uH

in terms of the MF spectrum Rl(c) and the SV spectrum Ql(c) at
the core surface,

〈uH 〉 =

√
∞∑

l=1

(l+1)
(2l+1) Ql (c)

√
∞∑

l=1

l(l+1)2

c2(2l+1)
Rl (c) 〈cos γ 〉

. (A10)

Note that this estimate depends only on the spectral properties of
the observed magnetic field. Any phase information associated with
the efficiency of induction is contained within the factor 〈 cos γ 〉.
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