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A dynamo cascade interpretation of the geomagnetic dipole decrease
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S U M M A R Y
We propose a spectral transfer model for the secular variation of the geomagnetic core field
to explain the simultaneous decrease in dipole field intensity and the increase in non-dipole
field intensity from 1840 to the present in terms of a dynamo cascade process. The main
assumption of this model is that magnetic energy is transferred between adjacent spherical
harmonic degrees in the Mauersberger–Lowes spectrum of the geomagnetic field. The key
parameters are a set of coefficients γn that indicate the rate and direction of magnetic energy
transfer through the spectrum. Applying the spectral transfer model to the historical period,
we find that the quadrupole family of the core field can be characterized by a persistent inverse
magnetic energy cascade from higher towards lower spherical harmonics. In the dipole family
of the core field, we find cascade behaviour generally from lower to higher spherical harmonics,
consistent with axial dipole decrease, but with a high level of time variability that correlates
with variations in the dipole family intensity. During time intervals when the dipole family
intensity rapidly decreases, energy appears to cascade towards higher spherical harmonics,
beyond the limit of the observable part of the core field spectrum. During time intervals when
the dipole family intensity is nearly constant, a more limited forward cascade appears to trap
energy at intermediate spherical harmonics. Similar fluctuations in the rate and direction of
spectral transfer are also seen in the Mauersberger–Lowes spectrum of a numerical dynamo
model during a dipole decrease event that led to a polarity excursion. We discuss the possibility
of this scenario for the current geomagnetic dipole decrease.

Key words: Dynamo: theories and simulations; Geomagnetic excursions; Rapid time
variations.

1 I N T RO D U C T I O N

During the historical period, the shape of the low degree part of the
geomagnetic field spectrum has rapidly changed with time. Since the
advent of geomagnetic field intensity measurements about 170 yr
ago, the geomagnetic dipole moment has been losing intensity, while
at the same time the non-dipole part of the core field has been gaining
intensity. According to the historical gufm1 field model (Jackson
et al. 2000), the geomagnetic dipole moment has dropped from
8.50×1022 Am2 in 1840 to 7.84×1022 Am2 in 1990, and similarly,
its dominant axial component has decreased from 8.33 × 1022 Am2

in 1840 to 7.70 × 1022 Am2 in 1990. The rate of change of the axial
dipole moment in 1990 was −4.38×104 Am2 yr−1, compared to the
average rate of −4.22×104 Am2 yr−1 over the 150-yr period. Recent
geomagnetic field models based on satellite data show that the
historical dipole decrease continues to the present-day. According to
the xCHAOS field model (Olsen & Mandea 2008), the 2009 dipole
moment was 7.75 × 1022 Am2, its axial component was 7.63 ×
1022 Am2, and its current rate of change is −4.92 × 104 Am2 yr−1,
indicating that the dipole decrease has recently accelerated.

Fig. 1 shows time-series of the rms field intensity, rms dipole
intensity, rms axial dipole intensity, and rms non-dipole field in-
tensity on the core–mantle boundary (CMB) from 1840 to present.
The period 1840–1990 is covered by model gufm1 from which we
expanded until spherical harmonic degree nmax = 8, while the pe-
riod 1999–2009 is represented by model xCHAOS until nmax = 14.
The mismatch between the rms field intensities in the two models
reflects different regularization assumptions and different levels of
harmonic truncation due to the greater quality and time resolution
of the modern data. While the dipole field decreases monotonically
in both models, the non-dipole field has the opposite trend, sub-
stantially increasing with time. Overall, the rms intensity (Verosub
& Cox 1971; Benton & Alldredge 1987) and the average absolute
value of the radial component (Benton & Voorhies 1987) of the
core field have changed relatively little during the historical period;
if anything, they have increased very slightly, although this may be
an artefact of improved resolution of the core field with time.

Were the current trends to persist, the axial dipole would hypo-
thetically vanish in about 1600 yr time. However, the dipole vari-
ation has not been uniform in the past. Evidence suggests that the
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Figure 1. Time-series of the rms core field intensities: (a) total field Brms; (b) dipole Brms(n = 1) and axial dipole Brms(n = 1, m = 0); and (c) non-dipole
Brms(n > 1), all from model gufm1 (Jackson et al. 2000) to spherical harmonic degree nmax = 8 for the period 1840–1990, and similarly (d)-(f) from model
xCHAOS (Olsen & Mandea 2008) to nmax = 14 for the period 1999–2009. All intensities are in mT at the core–mantle boundary. In (b) and (e) the solid curve
is the full dipole intensity and the dashed curve is the axial dipole intensity. 1 Am2 is equivalent to 3.87 · 10−25 mT for the geomagnetic g0

1 Gauss coefficient,
or to 2.74 · 10−24 mT for the corresponding rms field.

dipole decrease during the 250 yr prior to 1840 was significantly
slower than today (Gubbins et al. 2006), possibly remaining constant
(Finlay 2008) during that time. According to the archaeomagnetic
core field model CALS7K.2 (Korte & Constable 2005), the current
episode of dipole decrease began within the past 1 kyr and followed
a period of about 2 kyr when the dipole intensity fluctuated. Less
is known about the non-dipole core field during that time, but the
irregular dipole variations over the past 3 kyr, and moreover, the
opposing trends of the dipole and non-dipole parts over the past
150 yr, are the primary evidence that the shape of the geomagnetic
spectrum undergoes rapid changes.

There are a variety of dynamo mechanisms that could drive the
dipole and non-dipole fields in opposite directions. One possibility
is that magnetic diffusion is preferentially weakening the dipole field
by decay of its higher modes (Moffatt 1978) or by expulsion of re-
versed dipolar field from the core (Bloxham 1986), while at the same
time, dynamo processes are strengthening the non-dipole field. An-
other possibility is that advection by fluid motions in the outer core
is distorting the pattern of the field on the CMB, and thereby directly
transferring magnetic energy from the dipole part to the non-dipole
part of the core field. The rate of dipole decrease is variable, but on
average it is about one order of magnitude faster than predicted by
free decay (Olson & Amit 2006), so it is likely that the trends shown
in Fig. 1 are a consequence of both advective (Roberts & Scott 1965)
and diffusive (Gubbins 1987) processes operating simultaneously.

Importantly however, the effects of advection and diffusion may not
operate equally over the whole spherical harmonic spectrum of the
core field. Because the magnetic Reynolds number of the core is
large (e.g. Bloxham & Jackson 1991), it is expected that advection
effects play a proportionally larger role in the geomagnetic secular
variation (SV) on the largest scales (i.e. for the lowest spherical
harmonics), whereas diffusion plays a proportionally larger role on
the smaller scales (i.e. for higher spherical harmonics).

In this paper, we propose a simple cascade model that connects
the dipole moment decrease to the time evolution of the energy spec-
trum of the core field. The model assumes that magnetic energy SV
is dominated by transfer between adjacent spherical harmonic de-
grees by fluid motions in the outer core. Our model is motivated
by the trends evident in Fig. 1 and supported by results of numeri-
cal dynamo simulations, which show qualitatively similar spectral
transfer effects during times of rapid dipole collapse, events that
sometimes precede polarity reversals and excursions. We apply our
cascade model to estimate the rates of spectral transfer in the core
during the present-day dipole decrease.

2 G E O DY NA M O C A S C A D E M O D E L

The average magnetic energy density of the core field on the CMB
is proportional to R, the mean squared field intensity at the core
radius r = c. The spectrum of R, called the Mauersberger–Lowes
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spectrum, is conventionally written as

R =
nmax∑
n=1

Rn, (1)

where n is spherical harmonic degree and nmax is the truncation,
usually nmax � 14 for the core field. The Mauersberger–Lowes
spectrum at the CMB is one of the primary constraints on the
dynamo process in the core (Dormy et al. 2000). The terms Rn

at the CMB can be expressed as sums of squares of the Gauss
coefficients of the core field, according to (Lowes 1974)

Rn = (n + 1)
(a

c

)2n+4 n∑
m=0

((
gm

n

)2 + (
hm

n

)2
)
, (2)

where a is Earth’s radius and gm
n and hm

n are the Gauss coefficients
of the core field in mT at spherical harmonic degree and order n
and m, respectively. The mean squared field intensity can also be
defined for the equatorially antisymmetric part of the core field
termed the dipole family by summing (2) over odd values of n − m,
and for the equatorially symmetric part of the core field termed the
quadrupole family by summing over even values of n − m (Roberts
1971). In this paper, we denote spectra with these symmetries using
superscripts a and s, for example Ra

n and Rs
n , respectively.

Using (2), the time variation of the spectrum of R is written as
(Cain et al. 1989)

Ṙn = 2 (n + 1)
(a

c

)2n+4 n∑
m=0

(
gm

n ġm
n + hm

n ḣm
n

)
, (3)

where the dot denotes time derivative. Like the Mauersberger–
Lowes spectrum, (3) can be split into its equatorially antisymmetric
and symmetric parts, denoted here by Ṙa

n and Ṙs
n , respectively. Note

that (3) which has units of mT2yr−1 differs from the definition of
the spectrum of the SV field itself at the CMB, which has units of
mT2yr−2 and is given by (Alldredge 1984; McLeod 1996; Voorhies
2004)

Sn = (n + 1)
(a

c

)2n+4 n∑
m=0

((
ġm

n

)2 + (
ḣm

n

)2
)

. (4)

Temporal changes in the shape of the Mauersberger–Lowes spec-
trum are reflected in non-uniform time variations in the individual
terms Ṙn, Ṙa

n , Ṙs
n, Sn, Sa

n or Ss
n .

A cascade model for the evolution of Rn can be derived starting
from the radial component of the magnetic induction equation at the
top of the core. Assuming incompressible flow, the radial component
of the induction equation at the CMB is

∂ Br

∂t
+ uh · ∇ Br + Br∇h · uh = ηr̂ · ∇2B, (5)

where Br is the radial component of the magnetic field on the CMB,
t is time, uh is the free stream fluid velocity in the outer core below
the CMB, r is the radial coordinate, r̂ is its unit vector, η is the
magnetic diffusivity of the outer core, B the magnetic field vector
on the CMB and the subscript h denotes coordinates tangent to
the CMB. The first term on the left-hand side of (5) is the SV, the
second and third terms on the left-hand side represent advection
of magnetic field by the flow, and the term on the right-hand side
represents magnetic diffusion. Units of all these variables are given
in Table 1.

Multiplying (5) by Br and averaging over the CMB gives

∂

∂t

〈
B2

r

〉 = − 〈
uh · ∇ B2

r

〉 − 2
〈
B2

r ∇h · uh

〉 + 2η
〈
Br r̂ · ∇2B

〉
, (6)

where 〈 〉 denotes CMB surface average. The left hand side of (6)
is the time derivative of the mean square radial field. Using the
relationship

〈
B2

r

〉 =
nmax∑
n=1

n + 1

2n + 1
Rn, (7)

(6) can be written symbolically for each spherical harmonic degree
as

Ṙn = Tn − Dn (8)

where

Tn = −2n + 1

n + 1

(〈
uh · ∇ B2

r

〉
n
+ 2

〈
B2

r ∇h · uh

〉
n

)
(9)

is the transfer spectrum of the core field and

Dn = −2
2n + 1

n + 1
η

〈
Br r̂ · ∇2B

〉
n

(10)

is its diffusion spectrum, both at harmonic degree n. In the following
subsections we develop parametrized representations for both the
diffusion spectrum Dn and the transfer spectrum Tn .

2.1 Diffusion spectrum

The exact form of magnetic diffusion in the core cannot be deduced
from the geomagnetic field at the CMB, and therefore the diffusion
terms in (5) and (6) cannot be inferred from observations. However,
we can estimate a lower limit on the diffusion spectrum Dn from
the rate of free decay of the core field at each harmonic degree n, as
follows. The radial field on the CMB is given in terms of the Gauss
coefficients by

Br =
nmax∑
n=1

n∑
m=0

Br
m
n =

nmax∑
n=1

n∑
m=0

(a

c

)n+2
(n + 1) Pm

n (cos θ )

× (
gm

n cos mφ + hm
n sin mφ

)
, (11)

where Br
m
n is the radial field contribution of degree n and order

m, Pm
n are the Legendre functions, θ is colatitude and φ is longitude.

Focusing on free decay, the diffusion term in (5) can be rewritten
using (11) as

ηr̂ · ∇2B = − η

c2

nmax∑
n=1

n∑
m=0

p j
n

2
Br

m
n , (12)

where p j
n denote the free decay eigenvalues of each mode j. The

eigenvalues p j
n correspond to the roots of the Bessel function

J(n−1/2)(p j
n ) = 0 (see Moffatt 1978), the smallest root at a given

n corresponding to the fundamental mode pn , and the larger roots
corresponding to the higher modes, which have more radial struc-
ture in the core and therefore diffuse faster. Multiplying both sides
of (12) by (11), summing over m, and averaging the resulting ex-
pression at the CMB, we obtain the following representation of the
diffusion spectrum at harmonic degree n:

Dn = 2
η

c2
p2

n Rn, (13)

where we choose for simplicity the fundamental mode pn . Although
(13) is not a complete model for magnetic diffusion, it serves to
define the fundamental timescales for free decay at each spherical
harmonic

τ d
n = c2

2ηp2
n

. (14)
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Table 1. Summary of variables and their dimensions. MKS units are: T is Tesla, m is
metres, s is seconds, and � is a any tracer such as temperature or chemical concentration. In
the text we sometimes use other units, e.g. mT, km, yr. Note that all variables are also defined
for the equatorially asymmetric dipole family and the equatorially symmetric quadrupole
family by the superscripts a and s, respectively.

Variable Symbol Dimension

Spherical radial, colatitude and longitude coordinates r, θ and φ m and radians
Cartesian wavenumber k m−1

Spherical harmonic degree and order n and m –
Legendre function Pm

n –
Earth’s surface radius a m

Earth’s core radius c m
Gauss coefficients gm

n and hm
n T

Magnetic energy spectrum Rn T2

SV of Magnetic energy spectrum Ṙn T2 s−1

SV spectrum Sn T2 s−2

Radial magnetic field Br T
Radial magnetic field of harmonic n and m Br

m
n T

Rms magnetic field Brms T
Magnetic field vector B T

Time t s
Tangential velocity vector uh m s−1

Magnetic diffusivity η m2 s−1

Free decay eigenvalues p j
n –

Fundamental free decay mode pn –
Fundamental free decay timescale τ d

n s
Cartesian scalar variable �k �

Cartesian scalar energy spectrum Rk �

SV of Cartesian scalar variable �̇k � s−1

Cartesian transfer spectrum Tk � s−1

Diffusivity of Cartesian scalar variable κ m2 s−1

Cartesian flux spectrum Fk � ms−1

Cartesian spectral transfer rate γk m s−1

Spherical transfer spectrum Tn T2 s−1

Spherical diffusion spectrum Dn T2 s−1

Spherical flux spectrum Fn T2 s−1

Spherical spectral transfer rate γn s−1

SV timescale based on Sn τn s
SV timescale based on Ṙn τ ∗

n s

Slow spectral variations correspond to Ṙn-values small compared
to fundamental mode Dn-values, and conversely, rapid spectral
variations correspond to Ṙn-values large compared to the same
Dn-values. Our cascade model is intended for the fast spectral
change regime.

2.2 Transfer spectrum

We model the transfer spectrum Tn of the core field as a cascade
process, on the basis of the similarity between (8) and the equa-
tion governing spectral evolution of a scalar variable in a turbu-
lent flow. In the classical Kolmogorov description of hydrodynamic
turbulence, energy is exchanged between similar size eddies with-
out major jumps from one scale to another (Frisch 1995). This
Kolmogorov type of energy transfer is usually referred to as local,
and the term cascade is often used to describe the transfer process.
In this paper, we use the term local for the transfer of magnetic
energy between adjacent harmonics in spectral space. A forward
cascade denotes energy transfer from large to small scales, or in
our case, from lower to higher spherical harmonics. Conversely,
an inverse cascade denotes energy transfer from higher to lower
harmonics.

Analyses of numerical simulations of magnetohydrodynamic
(MHD) turbulence (Alexakis et al. 2007) associate these two types
of spectral transfer with different terms in the induction equation.
Local magnetic energy transfer is associated with advection of mag-
netic field by the flow (first term on the right-hand side of 9), whereas
non-local transfer is associated with magnetic field stretching (sec-
ond term on the right-hand side of 9). For non-rotating MHD tur-
bulence, Alexakis et al. (2007) find that the non-local transfer of
magnetic energy due to stretching actually dominates over local
magnetic energy transfer by direct energy advection. In addition,
recent core flow models argue that non-local transfer, in the form of
interactions between small-scale field and large-scale flow or small-
scale flow and large-scale field leading to small-scale SV, dominates
their model misfit (Eymin & Hulot 2005; Pais & Jault 2008). How-
ever, we argue that local spectral transfer is the dominant process
that shapes the core field spectrum, because so much of the core
field SV can be explained as frozen-flux advection by an evolving
large-scale dominantly toroidal flow (e.g. Jackson 1997; Amit &
Olson 2006) with the non-local energy transfer from smaller scales
being of secondary importance.

In terms of Cartesian wavenumbers k, the spectral evolution
equation of a scalar variable subject to advection and diffusion is
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A dynamo cascade interpretation 1415

commonly written as (Hill 1978)

�̇k = Tk − 2κk2�k, (15)

where �k is the wavenumber spectrum of the scalar variable, Tk is
the transfer spectrum, and κ is the diffusivity of the scalar variable.
Local cascade models relate Tk to a quantity called the flux spectrum
Fk via

Tk = − ∂

∂k
Fk . (16)

Physically, this spectrum Fk represents the flux of magnetic en-
ergy through wavenumber space. It is often assumed that the flux
spectrum Fk is linked to the energy spectrum Rk via

Fk = γk Rk, (17)

where γk is the spectral transfer rate in units of velocity (Corrsin
1961, 1964). In general, all quantities in (17) are functions of both
wavenumber and time. However, under conditions of statistical equi-
librium, the time dependence of γk in (17) is assumed to vanish, and
in this situation it is often found that γk can be approximated as a
power-law function of k. For example, a standard form of γk for the
spectrum of a passive scalar in homogeneous isotropic turbulence
is (Hill 1978; Frisch 1995)

γk ∝ k5/3. (18)

At the top of Earth’s core the flow is neither isotropic nor ho-
mogeneous (due to the rotational effect and mantle control), so
although the 5/3 Kolmogorov exponent may not hold, it has been
proposed that a general power law of the form (18) is applicable
there (Voorhies 2004).

The preceding discussion applies to continuous wavenumber
spectra. For spherical harmonic spectra, there is a close analogy
between (8) and (15) in the asymptotic limit of large n, for which
kc = √

n (n + 1) becomes a good approximation (Backus et al.
1996). However, the correspondence is not exact because k is con-
tinuous while n is discrete (see Appendix B4 of Voorhies 2004). Ac-
cordingly, in place of (16), we hypothesize that the spectral transfer
and spectral flux are related by the following difference formula

Tn = Fn−1 − Fn . (19)

Note that the dependence of T on F in (19) involves only nearest-
neighbour spectral terms, consistent with our local spectral transfer
assumption. Substituting (19) into (8) then yields the following
recursion formula for the flux spectrum:

Fn = Fn−1 − Ṙn − Dn (20)

with the initial value F0 = 0 (corresponding to zero geomagnetic
monopole). We further hypothesize that, by analogy with (17) the
flux spectrum Fn and Mauersberger–Lowes spectrum Rn are related
by

Fn = γn Rn, (21)

where γn represents the local rate of transfer through the
Mauersberger–Lowes spectrum in units of reciprocal time (Table 1).
According to (21), γn is just given by Fn/Rn . However, to avoid sin-
gularities where Rn is small, we obtain smoother and more stable
results if we calculate γn as

γn = Fn + Fn+1

Rn + Rn+1
(22)

in which case γn in our model represents the rate of transfer from
spherical harmonic degree n to degree n + 1. With this definition,

positive values of γn correspond to a forward cascade of magnetic
energy through the Mauersberger–Lowes spectrum (from n to n+1),
whereas negative values of γn correspond to an inverse magnetic
energy cascade (from n + 1 to n).

Although our model assumes only local spectral transfer, it is
important to point out that non-local spectral transfer may be im-
portant in the geodynamo, particularly as it contributes to the dipole
moment. Non-local spectral transfer is sometimes observed in non-
magnetic turbulence, both in experiments (Wiltse & Glezer 1993)
and in numerical simulations (Alexakis et al. 2005). Spectral trans-
fer is well established in MHD turbulence (Maron & Goldreich
2001; Biskamp 2003; Müller & Grappin 2005; Boldyrev 2006).
Numerical simulations show that the spectral transfer typically con-
sists of two components, one local and Kolmogorov-like, the other
non-local, in which the magnetic energy jumps discontinuously
from small-scales to large-scales (Yousef et al. 2007). Theoreti-
cally, this type of non-local transfer is implicit in the α-dynamo
effect (Moffatt 1978; Biskamp 2003). It is also linked to magnetic
helicity, which is thought to be a vital ingredient in the generation
of large-scale magnetic fields from small-scale turbulent flows in
astrophysical bodies (Pouquet et al. 1976; Cho et al. 2002).

2.3 Analytical tests of local spectral transfer

The relationship between the transfer spectrum and the flux spec-
trum (16) holds if the spectral transfer is local, but may give spurious
results in situations where the spectral transfer is non-local. In addi-
tion, our finite difference (19) and smoothing (22) approximations
might constitute additional sources of error in some situations. Here
we use analytical examples in which we specify the spectral trans-
fer, in order to show where our model assumptions work and where
they breakdown.

The first examples are of purely local spectral transfer, so these
serve to test our method of calculating γn . We specify the actual
local spectral transfer rate γ̃n as the net magnetic energy transfer
from degree n to degree n+1 in the Mauersberger–Lowes spectrum,
normalized by Rn , and located in spectral space at n. For simplicity
in this section we adopt the frozen-flux limit, so the diffusion term
Dn is ignored. Accordingly, the relationship between the actual local
spectral transfer rate γ̃n , the Mauersberger–Lowes spectrum Rn and
its SV Ṙn is

Ṙn = γ̃n−1 Rn−1 − γ̃n Rn . (23)

Also note that in the frozen-flux limit our model Fn (20) yields

Fn = −
n∑

q=1

Ṙq . (24)

Consider a decreasing dipole field with Ṙ1 < 0 in which the
dipole energy is transferred to successively higher harmonics at a
uniform rate, while the non-dipole part of the Mauersberger–Lowes
spectrum is constant in time. The situation is sketched in Fig. 2(a).
Further assume in this first example that the Mauersberger–Lowes
spectrum is flat, that is, Rn = R1. Then according to (23),
γ̃n = −Ṙ1/R1 is the actual spectral transfer rate through the
Mauersberger–Lowes spectrum. For comparison, our model gives
Fn = −Ṙ1 according to (24), and according to (22) γn = −Ṙ1/R1,
identical to the actual transfer rate.

If the field spectrum is not flat, then the spectral transfer rates
in our model will not be identical to the actual ones. However, the
two will be very close if the Mauersberger–Lowes spectrum has a
continuous variation with n. Consider for instance the same transfer
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1416 H. Amit and P. Olson

Figure 2. (a) Schematic illustration of a uniform, local, forward energy cascade. (b) Normalized spectral transfer rates versus spherical harmonic degree n
with Rn = R1/n: actual values −(R1/Ṙ1)γ̃n (25) denoted by asterisks versus the model −(R1/Ṙ1)γn (26) denoted by triangles. The positions of the model γn

have been shifted by one half unit of n to represent transfer between harmonics n and n + 1.

from the dipole field as in the previous example, but in this case
assume Rn = R1/n for the Mauersberger–Lowes spectrum. Then
according to (23)

γ̃n = −n
Ṙ1

R1
, (25)

whereas according to (22) and (24)

γn = −n
Ṙ1

R1

2n + 2

2n + 1
. (26)

As shown in Fig. 2(b), the difference between our model rates (26)
and the actual rates (25) are minor, particularly with increasing n.

A second example again assumes local spectral transfer but al-
lows for time variation in the non-dipole as well as the dipole parts of
the Mauersberger–Lowes spectrum. Consider as before a decreas-
ing dipole field with Ṙ1 < 0, but in this case the forward cascade is
non-uniform, and transfers successively smaller amounts of mag-
netic energy towards successively higher degrees n (Fig. 3a). This
results in an increasing non-dipole spectrum in which

Ṙn>1 = −α Ṙ1, (27)

where α is the fractional difference in the energy transferred from
one harmonic to the next higher. Although this is just a slight ex-
tension of the first examples, it is an idealization of the historical
behaviour of the core field. Assuming as in the previous case that
Rn = R1/n, (23) and (27) give for the actual transfer rate

γ̃n = −n
Ṙ1

R1
(1 − (n − 1) α) , (28)

whereas according to (22), (24) and (27), the model values are

γn = −n
Ṙ1

R1

n + 1

2n + 1
(2 − (2n − 1) α) . (29)

Figs 3(b)–(e) compare between (28) and (29) for several values
of the parameter α. As in the previous examples, the agreement

is excellent. According to (28) and (29), the cascade is forward
(γ > 0) up to n = N , where

N = α + ε

εα
, (30)

where ε = 1 for the actual transfer and ε = 2 for our model.
For n > N , the γ -coefficients change sign. In these situations,
our model interpretation is that magnetic energy cascading up
the spectrum becomes absorbed (trapped) in the spectral band
2 ≤ n ≤ N .

For the geodynamo, spectral transfer of magnetic energy is more
complex than these simple examples, involving a combination of
local, non-local, forward and inverse cascades (Fig. 4a). To illus-
trate how our local spectral transfer model treats non-local spectral
transfer, consider the situation shown in Figs 4(b) and (c). In these
cases, energy from the dipole is transferred directly to some higher
harmonic n′ beyond (Fig. 4b) or within (Fig. 4c) the observable core
field spectrum, while all other harmonics experience zero net trans-
fer. In this case our model incorrectly predicts a continuous forward
cascade from n = 1 to n = n′ − 1 (as in e.g. (26) and Fig. 2), while
the actual spectral transfer is non-local, that is, γ̃n = 0. Although
this example demonstrates the pitfalls in distinguishing between lo-
cal and non-local transfer effects, it also suggests there are warning
signs, such as abrupt changes in the inferred spectral transfer rate,
which indicate where the transfer is non-local.

Even though it is not possible to uniquely distinguish local from
non-local spectral transfer, there are some situations that strongly
favour the local transfer interpretation. For example, consider the
case in which a local peak in the Mauersberger–Lowes spectrum is
observed to propagate towards higher degrees over time. As illus-
trated in Figs 5(a) and (b), the energy peak centred at n′ at time t0

propagates to degree n′ + 1 at time t0 + δt . The amplitude of the
peak is δR relative to the background level R1 of the spectrum. In
this case, the actual spectral transfer rates in the neighbourhood of
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Figure 3. As in Fig. 2 for a non-uniform, local, forward energy cascade (28)–(29). In (b)–(e) the spectral transfer rates are given for various α values.

the peak are

γ̃n′−1 = γ̃n′+1 = 1

δt

δR

2R1 + δR

γ̃n′ = 1

δt

δR

R1 + δR
, (31)

whereas our model rates in the same neighbourhood are

γn′−2 = γn′+1 = 1

δt

δR

4R1 + δR

γn′−1 = γn′ = 1

δt

3δR

4R1 + 3δR
. (32)

Again our model captures well the actual rates, independently of
the peak-to-background ratio (Figs 5c and d).

In Fig. 6(c) a travelling peak that propagates from higher towards
lower degrees in the quadrupole family of the Mauersberger–Lowes
spectrum is evident in the geomagnetic core field. For this structure,
the peak-to-background amplitude is (R1 + δR) /R1 ∼ 4, compara-
ble to the propagating example used in Fig. 5(d). Because our model
is shown to recover the propagation direction, location in spectral
space and speed, we suggest that the evolution of this particular

structure in Fig. 6(c) is evidence for local energy transfer in the
geomagnetic field.

2.4 Spectral transfer rates and secular variation timescales

The traditional measures of core field variations are the SV
timescales τn , which in our notation are defined as

τn =
√

Rn

Sn
(33)

(Hulot & LeMouël 1994; McLeod 1996; Hongre et al. 1998;
Christensen & Tilgner 2004; Holme & Olsen 2006; Gillet et al.
2009). The magnitude of τn may vary significantly from one epoch
to another (Hulot & LeMouël 1994). Voorhies (2004) argued that
the timescale

τ ∗
n = Rn

|Ṙn |
(34)

based on the SV of the spectrum Ṙn is more relevant than τn which
is based on the spectrum of SV Sn . Physical interpretation of (33)
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Figure 4. Schematic illustrations of non-local transfer. (a) A general mixed state of local, non-local, forward and inverse cascades. (b) Non-local transfer from
the dipole to a degree higher than the observable spectrum. (c) Non-local transfer from the dipole to a high degree within the observable spectrum.

and (34) depends strongly, although implicitly, on the dominant pro-
cesses that control the SV at each spherical harmonic degree. At
low magnetic Reynolds number conditions for example, (33) repre-
sents free decay timescales for each harmonic of the field, whereas
at high magnetic Reynolds number conditions, (33) represents a
combination of spectral transfer by advection and diffusion (Liu
& Olson 2009). Hulot & LeMouël (1994) determined τn for the
non-axial dipole field to be on the order of several centuries, with
decreasing values for higher degrees. The axial dipole timescale
is longer than the timescales of other harmonics (Lowes 1974;
Alldredge 1984). Hulot & LeMouël (1994) argued that diffusive
effects dominate the axial dipole behaviour, whereas advection dom-
inates the other timescales. They also showed that, apart from the
axial dipole term, the dipole and quadrupole families have similar
τn-values. Christensen & Tilgner (2004) found they could match
core field SV timescales for n > 2 with the τn-values from a nu-
merical dynamo model with a large magnetic Reynolds number,
Rm � 500. Spectral transfer processes certainly play an important
role in this regime of Rm. Another piece of supporting evidence
are the very short timescales at the harmonics on the edge of the
core field at n � 14. Assuming power law fit for τn in the range
n = 3 − 12, satellite geomagnetic field models predict τ14 � 20 yr
for the highest degrees in the core field (Holme & Olsen 2006; Gillet
et al. 2009). Another short timescale relevant to the geomagnetic
field is the dynamo memory, the time required for the perturbed and
unperturbed dynamos to diverge. Hulot et al. (2010) inferred this is
about one century for the geodynamo.

Our spectral transfer rates γn conceptually differ from both the
SV timescales τn and from τ ∗

n in several respects. Most importantly,
γn can be positive or negative, its sign indicating the energy cascade
direction. A more subtle difference is that 1/τn and 1/τ ∗

n are related
to the rate of field change at a particular harmonic degree, whereas
γn refers to the rate at which energy transfers by one harmonic
degree. In spite of these differences, we show in the next section
that there are similarities between 1/τn and the magnitude of γn in
the historical field behaviour.

3 S P E C T R A L C A S C A D E A N D
G E O M A G N E T I C D I P O L E D E C R E A S E

We use the historical field model gufm1 on the CMB for the period
1840–1990 (Jackson et al. 2000) and the field model xCHAOS on
the CMB for the period 1999–2009 (Olsen & Mandea 2008) to
interpret the geomagnetic dipole decrease shown in Fig. 1 in terms
of a spectral cascade. For each core field model, we first calculate
Rn and its time derivative Ṙn on the CMB. To avoid artefacts due to
temporal variations in the resolution of gufm1, we truncate this field
model at degree and order nmax = mmax = 8, whereas we truncate
the xCHAOS field model at nmax = mmax = 14. Fig. 6(a) shows
the Mauersberger–Lowes spectrum of the historical geomagnetic
field on the CMB as a function of time, and Figs 6(b) and (c)
show the corresponding Mauersberger–Lowes spectra for the dipole
and quadrupole families, respectively. The same spectra for the
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Figure 5. (a) The Mauersberger–Lowes spectra of a peak travelling between times t0 to t0 + δt from n′ to n′ + 1, and (b) a schematic illustration of the
energy cascade. The background flat spectrum is R1 and the peak is elevated by δR. Normalized spectral transfer rates versus spherical harmonic degree n for
a peak-to-background ratios of (R1 + δR)/R1 = 3 (c) and (R1 + δR)/R1 = 4 (d): actual values δt γ̃n (31) denoted by asterisks versus the model δtγn (32)
denoted by triangles. The positions of the model γn have been shifted by one half unit of n to represent transfer between harmonics n and n + 1.

1999–2009 core field are shown in Figs 6(d)–(f). These contour
plots provide some qualitative evidence for geomagnetic energy
cascade, in the form of migration of local maxima and minima from
one n-value to its neighbours over time, for example, in the dipole
family spectrum from n = 3 to 4 and from n = 5 to 6 (Fig. 6b), and
more pronouncedly in the quadrupole family spectrum from n = 5
through 4 to 3 (Fig. 6c).

The next step is to calculate the flux spectra Fn from (20) using
Ṙn from Fig. 6 and diffusion spectra Dn from (13), in which we use
the fundamental mode eigenvalues for pn and assume η = 2 m2 s−1

for the magnetic diffusivity of the outer core (well within the range
of estimated values, see Poirier 2000). Table 2 lists the first 14
fundamental free decay modes and the corresponding free decay
timescales. Fig. 7 shows the time dependence of Fn obtained this
way. The black curves are derived from Ṙn and Dn at n = 1, whereas
the coloured Fn curves are derived from the Ṙn and Dn degrees from
1 to n. In general, we find that Dn increases with n, but in nearly all

cases |Dn |�|Ṙn |, that is, the impact of fundamental mode diffusion
on the flux spectrum of the core field is of secondary importance.

To illustrate how the recursion formula (20) works, consider
Fig. 7(a). The black curve is the most positive because the dipole
decreases, while the other curves are in general successively smaller
due to the pervasive increase of most non-dipole components, in
agreement with uniform flux convergence in the non-dipole part
of the spectrum and consistent with local transfer. Crossing of in-
dividual Fn curves is produced by instantaneous decrease of some
non-dipole harmonics, and this may indicate deviations from purely
local transfer.

The final step is to compute the spectral transfer rates γn from
Fn and Rn using (22). In Fig. 8, we compare the time average of
the absolute spectral transfer rates |γn | with the time average 1/τn

defined in (33). The positions of the spectral transfer rates have been
shifted by one half unit of n in Fig. 8 (and in subsequent figures)
in order to emphasize that they represent transfer between a pair of
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Figure 6. The Mauersberger–Lowes spectra of the geomagnetic field at the core–mantle boundary as a function of time. Spectral values are defined only at
integer spherical harmonic degrees n. For the period 1840–1990 from core field model gufm1 (Jackson et al. 2000) with nmax = 8: (a) full field; (b) dipole
family; (c) quadrupole family. For the period 1999–2009 from core field model xCHAOS (Olsen & Mandea 2008) with nmax = 14: (d) full field; (e) dipole
family; (f) quadrupole family. The log-scale ranges of the spectra in nT2 are given in the colour bars.

Table 2. Fundamental free de-
cay modes pn , and free de-
cay timescales τ d

n in years
based on magnetic diffusivity of
η = 2 m2s−1, for spherical har-
monic degrees n = 1 − 14.

Degree pn τ d
n [yr]

1 π 9733
2 4.493 4758
3 5.763 2892
4 6.988 1967
5 8.183 1435
6 9.356 1097
7 10.513 869
8 11.657 707
9 12.790 587
10 13.916 496
11 15.033 425
12 16.145 369
13 17.250 323
14 18.351 285

neighbouring harmonics. The overall magnitudes of the two rates
are comparable at low degrees in the total field and in both the
dipole and quadrupole families. Also, their trends are similar up
to spherical harmonic degree n = 8 in the total field, n = 7 in

the dipole family, and n = 6 in the quadrupole family, although
there are substantial differences at higher degrees. The absolute
spectral transfer rates in Fig. 8 tend to be less than the corresponding
SV rates 1/τn for the total field because γn can have either sign,
whereas τn is not. The dipole family γ a

n are dominantly positive,
whereas the quadrupole family γ s

n are dominantly negative, so the
absolute rates for the total field are smaller than those for each
family. The generally monotonic variations of γn with n in Fig. 8
is suggestive of the power-law spectral transfer rates commonly
found in turbulence measurements (Corrsin 1961, 1964; Hill 1978).
This behaviour is consistent with (although does not prove) our
interpretation of local, nearest-neighbour energy transfer through
the geomagnetic spectrum.

4 D I P O L E C O L L A P S E A N D S P E C T R A L
T R A N S F E R I N A N U M E R I C A L DY NA M O

Numerical dynamos show energy cascade behaviour, especially dur-
ing dipole collapse events that precede polarity reversals or ex-
cursions (Olson et al. 2009). Although these events involve both
magnetic advection and diffusion, even at very high magnetic
Reynolds numbers (Liu & Olson 2009), there are time intervals
when the net effects of diffusion on the low harmonic degree part
of the magnetic field are negligibly small. During these time inter-
vals, the mean square field intensity on the outer boundary of the
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Figure 7. Flux spectra of the core field Fn in nT2 yr−1 as a function of spherical harmonic degree n and time.

Figure 8. Time average of the absolute value of the spectral transfer rate γn (triangles) compared with time average of the SV rate 1/τn (squares), both in
yr−1, versus spherical harmonic degree n, for core field models gufm1 between 1840–1990 (a)-(c) and xCHAOS between 1999–2000 (d)-(f).
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dynamo remains practically constant, the dipole intensity rapidly
decreases while the non-dipole field compensates by increasing
intensity.

Fig. 9 shows an example of magnetic energy cascade during a
dipole collapse event from a numerical dynamo model. The control
parameters of this model are Ekman number E = 0.006, Prandtl
number Pr = 1, magnetic Prandtl number Pm = 20, and a com-
positional Rayleigh number Ra about 10 times supercritical, with
no-slip mechanical boundary conditions, zero light element flux at
the outer boundary, and fixed light element concentration at the in-
ner core boundary (for parameter definitions and more details see
Olson 2007). The choice of Pr = 1 can be justified by the Prandtl
turbulence hypothesis, while the choice of large Pm is aimed to
produce a large magnetic Reynolds number and a chaotic dynamo.
Although the control parameters in this specific dynamo model are
very far from being Earth-like, especially the large Ekman number,

this model is suitable for our purposes because it has a dipole-
dominated magnetic field during stable polarity periods, with rapid
dipole collapse events that sometimes result in polarity reversals
(Olson 2007; Olson et al. 2009), a combination that is hard to find
in numerical dynamos (Kutzner & Christensen 2002). The dipole
collapse event shown here culminated in a polarity excursion, in
which the dipole became very weak for about one half of a free
decay time then re-strengthened on return to its original polarity.
Magnetic field variables in Fig. 9 are scaled by (ρ�/σ )1/2, where
σ, ρ, � are electrical conductivity, density, and angular velocity of
rotation, respectively, and time is scaled by the most fundamental
(longest) dipole free decay time, starting from an arbitrarily selected
time before the main dipole collapse. Over the whole time interval
the average dipole decrease rate is just 1.5 times the dipole free
decay rate, however over some shorter periods, equivalent to about
150 yr, the dipole decrease rate reaches 6.5 times dipole free decay

Figure 9. (a) The Mauersberger–Lowes spectrum of the total field at the outer boundary of the dynamo model as a function of time during a dipole decrease
event. Spectral values are defined only at integer spherical harmonic degrees n. The linear-scale range of the dimensionless spectrum is given in the colour bar.
(b) Time variation of the dimensionless rms total field intensity Brms (solid), the rms non-dipole field intensity truncated at n = 9 Brms(10 > n > 1) (dotted),
and the rms dipole field intensity (dashed) Brms(n = 1) on the outer boundary. Dimensionless time is in dipole free decay units. Blue vertical lines correspond
to the three times indicated in Fig. 10, and the three periods are marked by the red arrow lines.
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Figure 10. Time averages of dimensionless flux spectra Fn (top) and dimensionless spectral transfer rates γn (bottom) both scaled by the dipole free decay
rate, versus spherical harmonic degree n during three time intervals of the dipole collapse event shown in Fig. 9. (a) time interval 0.05–0.28; (b) time interval
0.05–0.17; (c) time interval 0.17–0.28.

rate. For comparison, the present geomagnetic dipole decrease rate
is about 11 times dipole free decay rate (Olson & Amit 2006).

Fig. 9(a) shows the variation of the Mauersberger–Lowes spec-
trum as a function of time at the outer boundary during the collapse.
Although the model is taken to nmax = 32, we consider only har-
monics up to n = 9. Fig. 9(b) shows the variation of the total field
intensity, the non-dipole intensity truncated at n = 9, and the dipole
intensity, all at the outer boundary and non-dimensionalized with the
same parameters as Rn . Over the time interval between 0.05 and 0.28
(which corresponds to about 4.5 kyrs for the core), the dipole inten-
sity decreases substantially but the total field intensity net change
from beginning to end is negligible. Meanwhile, the non-dipole in-
tensity increases and magnetic energy in the Mauersberger–Lowes
spectrum (Fig. 9a) appears at progressively higher harmonic degrees
with time, as in an ideal forward cascade.

Fig. 10 shows time averages of the dimensionless flux spectrum
Fn (top) and the dimensionless spectral transfer rate γn (bottom)
over three time intervals from the dynamo model, calculated ac-
cording to (20) and (22), respectively, using the dimensionless
Mauersberger–Lowes spectrum Rn shown in Fig. 9 and values
of Dn from the dynamo model. Fig. 10(a) corresponds to the
time interval 0.05–0.28, which covers the main dipole collapse
event. Fig. 10(b) corresponds to the time interval 0.05–0.17, while
Fig. 10(c) corresponds to the time interval 0.17–0.28. Over each of
these time intervals the net change in total field intensity is neg-
ligible, and as expected, the net effect of radial diffusion is also
negligible.

Fig. 10(a) shows that, on average the flux spectrum Fn and the
transfer rates γn are all positive and are of the same order of mag-
nitude, corresponding to a nearly uniform, forward energy cascade
throughout the low degree Mauersberger–Lowes spectrum. It is
worth noting that the odd Fn are systematically larger than the even
Fn , a consequence of Ṙn < 0 for the odd whereas Ṙn > 0 for
the even harmonics. This behaviour may suggest that a quasi-local

transfer in steps of two harmonics is significant in the evolution of
the spectrum in this numerical dynamo model.

However, there are substantial short term variations in both Fn and
γn within the collapse event, as the difference between Figs 10(b)
and (c) reveals. Both of these sub-intervals begin with a dipole
intensity fall, but in the first interval the non-dipole exhibits zero
net intensity change, whereas in the second interval the non-dipole
intensity has a net increase (see Fig. 9b). Fig. 10(b) shows that Fn

and γn are larger than average and increase strongly with harmonic
degree n when the dipole collapse is particularly rapid, consistent
with the accelerated dipole decrease in a strong forward cascade
during this time. In contrast, Fig. 10(c) shows that Fn and γn are
small or negative and decrease with harmonic degree n, consistent
with inverse cascade at high harmonics and energy trapping at in-
termediate harmonics during this time. It is perhaps unexpected that
the cascade process is so strongly variable in time, even within a
single dipole collapse event. In the next section, we show that com-
parable short-term variability is seen in the historical geomagnetic
field.

5 G E O M A G N E T I C D I P O L E
I N T E N S I T Y S T E P S

As noted before, in our local transfer model the spectral rate γn may
be positive or negative, depending on whether the energy cascade
is forward or inverse. During the historical era the dipole family
is generally characterized by positive γ a

n , corresponding to forward
energy cascade from low to high harmonic degrees. In contrast,
the quadrupole family exhibits negative γ s

n and decreasing with n
(Fig. 11, which is a signed version of Fig. 8c), corresponding to
inverse energy cascade. The latter behaviour persists over the entire
historical period, with only minor variations from one snapshot to
another. It is perhaps counter-intuitive that γ s

1 is negative, suggesting
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Figure 11. Time average (1840–1990) quadrupole family spectral transfer rate γ s
n (triangles) compared with the corresponding SV rates 1/τ s

n (squares), both
in yr−1, versus spherical harmonic degree n, from core field model gufm1.

an energy flux to the equatorial dipole, despite the decrease in Rs
1

over the historical period (Amit & Olson 2008). The reason is
that over most of the historical period the equatorial dipole varies
much more slowly compared to the other harmonics so free decay
becomes comparable to and even larger than its SV, i.e. |Ṙs

1| < |Ds
1|.

Since 1960, however, the equatorial dipole decrease has accelerated,
causing a poleward motion of the dipole tilt (Amit & Olson 2008),
and in that period Fs

1 became positive and large. The interpretation
of the equatorial dipole time-evolution prior to 1960 in terms of our
flux transfer method is therefore probably non-robust.

The numerical dynamo model results in the previous section
demonstrate that γn may vary substantially over short time intervals
within a longer dipole decrease event. Interpreted as a cascade pro-
cess, changes in γn correspond to changes in the cascade direction,
and can decelerate or accelerate a dipole decrease event. Evidence
for these types of fluctuations can be seen in the historical core
field. Fig. 12 shows the rms intensity of the dipole family Ba

rms on
the CMB during the historical period. We focus on two time inter-
vals, 1895–1935 labeled (a) when Ba

rms was nearly constant in time,
and 1955–1990 labeled (b) when Ba

rms decreased precipitously. The
time averages of the dipole family spectral transfer rates γ a

n over
these two intervals are shown in Fig. 13.

The transition from positive to negative γ a
n with increasing n dur-

ing 1895–1935 (Fig. 13a) is indicative of magnetic energy forward

cascade from the dipole and magnetic energy inverse cascade from
n = 8, resulting in magnetic energy trapping at intermediate har-
monic degrees. This is consistent with simultaneous axial dipole
decrease and constant Ba

rms (Fig. 12) in which the energy cascading
from the dipole remains within the observable part of the core field
spectrum. Note the similarity between γ a

n in Fig. 13(a) to the spec-
tral transfer rate in the numerical dynamo dipole collapse during its
slower stage (Fig. 10c). Similarly, the increase in γ a

n with increas-
ing n for 1955–1990 (Fig. 13b) indicates a forward energy cascade,
which simultaneously accounts for the decrease of the axial dipole
and the sharp decrease in Ba

rms (Fig. 12), allowing energy to leave
the observable part of the core field spectrum via a uniformly for-
ward cascade. Here again there is close resemblance to γn in the
numerical dynamo during its time of most rapid dipole decrease
(Fig. 10b).

Analysis of the high resolution satellite field model xCHAOS re-
veals that the difference among the individual Fn curves increases
significantly within one decade, demonstrating the rapid changes in
the geodynamo (Olsen & Mandea 2008). Comparing the large-scale
spectral transfer rates for 1999–2009 (Fig. 8e) with the correspond-
ing time average for the preceding period 1955–1990 (Fig. 13b)
shows in both cases positive trends, suggesting forward cascade
at low harmonic degrees, although at lower rates than in the his-
torical field. The higher degrees revealed using the modern field

Figure 12. Dipole family rms intensity Ba
rms in mT for 1840–1990 from core field model gufm1. The two shaded time intervals (a) and (b) correspond to the

time averages shown in Fig. 13.
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Figure 13. Dipole family spectral transfer rates γ a
n (triangles) compared with corresponding SV rates 1/τ a

n (squares), both in yr−1, versus spherical harmonic
degree n averaged over the two time intervals (a) 1895–1935; and (b) 1955–1990, shown in Fig. 12.

model xCHAOS exhibit negative γ a
n at higher harmonic degrees

(not shown), suggesting that magnetic energy is trapped at n ∼ 9.
For the quadrupole family, the monotonic decrease of γ s

n with n dur-
ing the historical era (Fig. 11) transforms into a more complicated
n-dependence in the modern era (not shown), although for most
degrees the rates are again negative, indicative of inverse magnetic
energy cascade in the quadrupole family.

6 R E L AT I O N W I T H P R E V I O U S
G E O M A G N E T I C D I P O L E M O M E N T
A NA LY S E S

Core flow models inferred from inversions of geomagnetic SV data
were used to study dipole moment variations. Most core flow mod-
els neglect magnetic diffusion, under the so-called frozen-flux ap-
proximation (Roberts & Scott 1965), assuming that the magnetic
Reynolds number in the core is large. Olson & Amit (2006) in-
troduced a new theory that combines core flow and magnetic field
models to map the advective contributions to the axial dipole SV. Ac-
cording to their formulation, axial dipole moment advective sources
and sinks form where meridional flow interacts with radial mag-
netic field. Applying their derivation for the geomagnetic field, they
identified regions below the CMB where advection weakens the
dipole moment. They concluded that the geomagnetic axial dipole
moment decrease is caused by the combined effects of intensifi-
cation and poleward migration of reversed dipolar field as well as

normal dipolar field equatorward motion (see also Voorhies 1991).
Amit & Olson (2008) applied the same theory to localize advective
sources and sinks of equatorial dipole moment that are respon-
sible for dipole tilt variations. They found that the recent dipole
tilt decrease event in the past 40 yr is caused by two equatorial
dipole advective sinks where positive/negative radial magnetic field
is transported westward/northward towards/away from the negative
equatorial pole, respectively.

In fact, the core flow models of Jackson (1997) systematically
underestimate axial dipole SV, which he hypothesized is an arte-
fact of the tangential geostrophy constraint. In contrast, Whaler &
Davis (1997) argued that this underestimation is due to unmodelled
effects of magnetic diffusion. Core flow models constructed assum-
ing steady flow in a drifting reference frame (Voorhies & Backus
1985) were found to improve the fit to the axial dipole SV (Holme &
Whaler 2001). Increasing evidence for magnetic diffusion motivated
incorporation of diffusion effects in core flow inversion schemes.
The difficulty of accounting for diffusion is that the variation of
the field with depth is unknown, so radial diffusion SV cannot be
imaged from observations. Voorhies (1993) argued that diffusive
field expulsion and fluid upwelling will have the same kinematic
effect in terms of the observed SV. Holme & Olsen (2006) esti-
mated diffusive SV using free decay modes. Their largest estimates
were assigned for the lowest degrees, most notably the dipole. These
free decay models were used as error estimates in their core flow
inversions. Surprisingly, the resulting flows were nearly unchanged
compared to the flows inverted using conventional error estimates,
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perhaps indicating that the flows cannot account for diffusive ef-
fects (Holme 2007). A different approach was taken by Amit &
Christensen (2008). They found in numerical dynamos that radial
and tangential diffusion effects are well-correlated. They then used
the pattern of tangential diffusion from observations and an extrap-
olated magnitude to account for radial diffusion in order to model
full magnetic diffusion. Comparison of their diffusive and frozen-
flux inverted core flows suggests that accounting for radial magnetic
diffusion may in some locations affect significantly images of the
flow at the top of Earth’s core.

Our cascade model may be viewed as a complimentary approach
to core flow inversions. Our calculated transfer rates cannot substi-
tute for core flow models; these rates provide only a 1-D description
of magnetic field advection in spectral space, while core flows pro-
vide a 2-D image on the CMB. However, the process of core flow
inversions suffer from numerous assumptions, making the results
of theses models open to diverse interpretations (for a review see
Holme 2007). Our study may provide a framework for testing in-
verted core flow models. By substituting a spectral description of
the velocity field at the top of the core into (9) the transfer spec-
trum Tn is found, from which the spectral flux Fn can be calculated
(19), and finally the spectral transfer rate γn is obtained using (22).
Comparison of γn inferred from an inverted core flow model with
our direct calculation from the Mauersberger–Lowes spectra may
connect inverted core flow models with the Mauersberger–Lowes
spectra and highlight the ability of these models to capture the
spectral transfer phenomenon in general, and the dipole decrease
in particular. Such a comparison, though beyond the scope of this
study, is a worth-while future prospect.

7 C O N C LU D I N G R E M A R K S

We interpret the changes in the low degree Mauersberger–Lowes
geomagnetic spectrum at the CMB since 1840 using a magnetic
energy cascade model. Our model is motivated by the simultaneous
dipole field decrease and the non-dipole field increase over the
past 170 yr. We quantify the evolution of the Mauersberger–Lowes
spectrum by the spectral transfer rate γn , which indicates the rates of
energy transfer between neighbouring spherical harmonic degrees.
In our local transfer model, positive γn corresponds to forward
cascade of energy through the spectrum (from n to n + 1), negative
γn corresponds to inverse energy cascade (from n + 1 to n).

The values of our inferred spectral transfer rates are generally
consistent with the traditional SV rates 1/τn , and also consistent
with the independently estimated geodynamo memory time (Hulot
et al. 2010). However, we find that the transfer rates themselves fluc-
tuate significantly, sometimes changing sign, particularly within the
dipole family. Between 1955 and 1990 for example, the rms dipole
family intensity Ba

rms decreases rapidly and γ a
n increases with n,

implying a forward cascade with energy transfer out of the core
field spectrum towards n > 8. In contrast, between 1895–1935Ba

rms

is nearly constant while γ a
n decreases with n, becoming negative

at n > 6, implying energy trapping at intermediate n-values in the
core field spectrum. A numerical dynamo model shows comparable
behaviour during a prolonged dipole decrease event. For the geo-
magnetic quadrupole family, we find γ s

n is negative and decreases
with n, suggesting an inverse cascade.

In spite of these general similarities to a cascade process, we ac-
knowledge that caution should be exercised in applying this model
to the geomagnetic field. The central assumption of our model, local
transfer through the magnetic energy spectrum, is not a universal

property in MHD systems. Our free decay model of magnetic dif-
fusion serves as an energy sink only, while diffusive sources in
the form of magnetic field expulsion are not modelled. In addition,
there is conflicting evidence in the geomagnetic field behaviour (see
Fig. 7 and its discussion in Section 3).

Our analytical examples show that our model can capture the cas-
cade phenomenon provided that local energy transfer is dominant,
but it can equally interpret non-local transfer as local. Although we
point to some geomagnetic examples (e.g. Figs 2–5), further iden-
tification of local spectral transfer in core field is needed, in order
to substantiate our model. Extended, high resolution records of the
core field expected from future satellite missions such as SWARM
could make this possible.

Finally we address the important issue of whether the current
geomagnetic dipole decrease will result in a reversal. The similarity
between the forward energy cascade in the dipole collapse event that
preceded a reversal in the numerical dynamo model and the forward
energy cascade in the dipole family of the geomagnetic field may
be viewed as evidence for a beginning of a reversal. However, we
have shown that the time-variability of the spectral transfer rates
is very strong. It is therefore probably impossible to know, based
on the relatively short 150-yr period of available high resolution
geomagnetic field observations, whether these cascade trends will
prevail and lead to a reversal or not. Improvement in the quality
and spatial resolution of archaeomagnetic field models may allow
examining the persistence of the forward cascade trends inferred
from the historical field over millennial timescales.
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