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Helical core flow from geomagnetic secular variation
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Abstract

Fluid flow below the core-mantle boundary is inferred from geomagnetic secular variation data, assuming frozen magnetic flux
and a new physical assumption termed helical flow, in which the tangential divergence correlates with the radial vorticity. Helical
flow introduces streamfunction diffusion and removes non-uniqueness in the inversion of the magnetic induction equation. We
combine helical flow with tangential geostrophy and compare the following physical assumptions: tangential geostrophy, strong
helicity, weak helicity and columnar flow, using geomagnetic field models from the 2000 Oersted and 1980 Magsat satellites.
Our solutions contain some features found in previous core flow models, such as large mid-latitude vortices, westward drift in
most of the southern hemisphere, and suggested polar vortices. However, our solutions contain significantly more flow along
contours of the radial magnetic field than previous core flow models.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mapping the flow in Earth’s liquid outer core places
constraints on the geodynamo, the thermal structure of
the core, and the nature of core-mantle coupling. Geo-
magnetic data provided by the Danish Oersted satellite
in 2000, combined with the data from the US Magsat
satellite in 1980, give a global model of the Earth’s
magnetic field and its secular variation on the core-
mantle boundary up to spherical harmonic degree 14
for imaging of the fluid flow below the core-mantle
boundary. Here we present a method that combines
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helical flow and tangential geostrophy to obtain the
fluid motion below the core-mantle boundary consis-
tent with the secular variation. We compare results from
different types of physical assumptions, such as tan-
gential geostrophy, strong helicity, weak helicity and
columnar flow.

Our solution method is novel in several respects.
First, we formulate a general expression for the tan-
gential divergence term that incorporates inertial ef-
fects such as tangential geostrophy with effects due to
viscous and buoyancy forces that produce helical flow.
Second, our method uses a grid-based finite difference
representation, as opposed to the conventional spectral
methods in which the flow potentials are represented
in spherical harmonics.
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Non-uniqueness is a major problem in the inver-
sion of fluid flow at the top of the core from geomag-
netic secular variation data.Backus (1968)showed that,
without specifying the tangential divergence, the flow
is non-unique.Backus and LeMoüel (1986)showed
that the tangential geostrophy assumption reduces the
non-uniqueness, but does not eliminate it. Our helical
flow assumption removes this non-uniqueness.

The outline of the paper is as follows. InSection 2we
review the general theory and previous frozen flux in-
versions of geomagnetic secular variation. InSection 3
we describe the theoretical background for our method,
including our physical assumptions. InSection 4we de-
scribe our numerical technique and present results of a
test case to verify its reliability. InSection 5we present
our results, including a sensitivity test, a resolution test
and comparison between results from different physi-
cal assumptions. Our main findings are summarized in
Section 6.

2. Frozen flux theory

2.1. The radial magnetic induction equation at the
top of the core

Properties of the flow in the liquid outer core are
inferred from geomagnetic secular variation, assuming
the magnetic field acts like a tracer. The radial compo-
nent of the magnetic induction equation is

∂Br

∂t
+ �uh · ∇Br + Br∇h · �uh

= λ
(

1

r2

∂2

∂r2
(r2Br) + ∇2

hBr

)
(1)

whereBr is the radial component of the magnetic field,
t time, �uh the fluid velocity tangent to the core-mantle
boundary,λ the magnetic diffusivity and∇2

h = ∇2 −
1/r2 ∂/∂r(r2∂/∂r). Throughout the paper, the subscript
h refers to tangential (θ, φ) coordinates. To infer core
flow using (1), the “tracer”Br and its time derivative
∂Br/∂t are assumed known, and the fluid velocity�uh
is unknown.

Previous studies generally assumed frozen flux, in
which the diffusion of magnetic field is neglected in
comparison with the advection of magnetic field by
the flow. The frozen flux hypothesis is assumed valid

because the magnetic diffusion time scale,τλ = L2/λ,
is much longer than the advection time,τv = L/U,
whereL,U andλ are the typical length scale, velocity
and magnetic diffusivity for the Earth’s core. The ratio
of these time scales in (1) yields

τλ

τv
= |�uh · ∇Br|

|λ∇2
hBr|

∼ UL

λ
= Rm (2)

whereRm is the magnetic Reynolds number. Using
L = 106 m, U = 5 × 10−4 m/s andλ = 1 m2/s gives
τλ ∼ 30,000 years andτv ∼ 60 years, i.e.Rm ∼ 500,
large enough so that the effects of magnetic diffusion
can be neglected to a first approximation (e.g.Bloxham,
1989).

According to the Helmholtz representation, the tan-
gential velocity can be written as the sum of a tangen-
tially non-divergent toroidal velocity and a tangentially
divergent poloidal velocity,

�uh = �utor + �upol (3)

In a spherical coordinate system (r, θ, φ), the toroidal
velocity can be expressed by a streamfunctionΨ and
the tangential poloidal velocity can be expressed by a
scalar potentialΦ in the following way:

�utor = ∇ × Ψr̂ (4)

�upol = ∇hΦ (5)

wherer̂ is a unit radial vector. In terms of their com-
ponents, the toroidal and poloidal tangential velocities
are

(uθ, uφ)tor =
(

1

r sin θ

∂Ψ

∂φ
,−1

r

∂Ψ

∂θ

)
(6)

(uθ, uφ)pol =
(

1

r

∂Φ

∂θ
,

1

r sin θ

∂Φ

∂φ

)
(7)

Using these expressions for the velocities, the radial
vorticity in the fluidζ is given in terms of the stream-
functionΨ as

ζ = r̂ · ∇ × �uh = ∇2
hΨ (8)

and the surface divergence of the fluid velocity∇h · �uh
is given in terms of the scalar potentialΦ as

∇h · �uh = ∇2
hΦ (9)

Substitution of (6), (7) and (9) into (1) and neglecting
magnetic diffusion gives the radial component of the
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frozen flux magnetic induction equation in terms of the
two potentialsΨ andΦ. On the core-mantle boundary
(r = R, the radius of the core), (1) becomes

∂Br

∂t
+ 1

R2 sin θ

(
∂Ψ

∂φ

∂Br

∂θ
− ∂Ψ
∂θ

∂Br

∂φ

)

+ 1

R2

(
∂Φ

∂θ

∂Br

∂θ
+ 1

sin2 θ

∂Φ

∂φ

∂Br

∂φ

)
+ Br∇2

hΦ = 0

(10)

The physical interpretation of the terms in (10) are as
follows. The first term is the secular variation of the
magnetic field. The second and third terms are ad-
vection ofBr by toroidal and poloidal velocities, re-
spectively. The fourth term represents the effect of up-
welling motions from the interior of the outer core on
Br.

The core-mantle boundary is usually modeled a
rigid impermeable boundary, in which case the velocity
there is identically zero. However, sinceBr is contin-
uous there, it is assumed thatBr and∂Br/∂t vary little
through the boundary layer, and (10) applies to the flow
of the free stream at the top of the core just below the
core-mantle boundary (Bloxham and Jackson, 1991).

2.2. Previous studies

Different core flows were obtained in the past due
to different regularization methods, physical assump-
tions, and data (seeBloxham and Jackson, 1991for
a review of these). Previously-used spectral meth-
ods minimized simultaneously the data residual and
a quadratic function of the parameter vector using a
trade-off damping coefficient. Some previous studies
have minimized the kinetic energy to regularize their
solutions (Whaler, 1986; Gubbins, 1982). Others min-
imized the norm of the second derivatives of the flow
(Bloxham, 1989), or the deviation from a decreasing
velocity spectra (Gire and LeMoüel, 1990). Pais and
Hulot (2000)used a regularized method with one co-
variance matrix for the data uncertainty and another for
the a-priori kinetic energy. They found a small range
of damping coefficients which lead to a misfit in the
data residual in agreement with the data uncertainty,
and complies with the energetic requirement.

Previous authors truncated their flow solutions at
some spherical harmonic degree.Gire et al. (1986)

derived a low spherical harmonic degree spectrum of
motion.Whaler (1986)pointed out that the disadvan-
tage of previous methods is strong dependency on the
velocity truncation level.Rau et al. (2000)tested their
inversion method with synthetic data from dynamo
simulations. For their low-pass filter case, they resolved
the flow up to spherical harmonic degree 5. They con-
cluded that limited resolution due to crustal magnetiza-
tion, uncertainties in the physical assumptions, and un-
certainties in the methodical constraints lead to poorly
constrained flows.

Different methods and physical assumptions have
been used to reduce the non-uniqueness.Gubbins
(1982) assumed a combination of steady flow with-
out upwelling. He argued that the non-uniqueness is
reduced if two separate inversions yield two suffi-
ciently different directions of velocity.Voorhies (1986)
used the steady flow assumption and pointed out that
the non-uniqueness is reduced ifBr at three different
epochs is known.Rau et al. (2000)argued that the
steady flow assumption yields poor fits even in decadal
timescales. Another common way to reduce the non-
uniqueness is by specifying the tangential divergence
term in (1). The simplest upwelling assumption is, of
course, pure toroidal flow:∇h · �uh = 0. Without up-
welling the non-unique flow component is alongBr-
contours.Whaler (1980)interpreted relatively small
secular variation values at local extrema ofBr as sta-
tistical evidence for pure toroidal flow. Other authors
have also concluded that the flow at the top of the
core is purely toroidal.Gubbins (1982)interpreted the
apparent upwellings in core flow models as data un-
certainties, whileBloxham (1989)interpreted them as
contamination by radial magnetic diffusion.LeMouël
(1984) assumed tangential geostrophy from the bal-
ance between Coriolis and pressure gradient forces
below the core-mantle boundary:∇h · (�uh cosθ) = 0.
For this assumption the non-unique flow component is
alongBr/ cosθ-contours that do not cross the equator.
These ambiguous patches compose 40% of the core-
mantle boundary at 1980 (Bloxham and Jackson, 1991;
Chulliat and Hulot, 2000). Rau et al. (2000)concluded
that the flow is mostly toroidal and geostrophic. Recent
studies byPais and Hulot (2000)andHulot et al. (2002)
preferred the tangential geostrophy assumption.

Some of the main inferences about core flow from
previous studies are as follows.Voorhies (1986)found
in pure toroidal flow solutions evidence for Taylor
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columns in asymmetric vortices with respect to the
equator. Some studies found that pure toroidal flows
had better fits than geostrophic flows (Bloxham, 1989;
Bloxham and Jackson, 1991). Bloxham (1989)ob-
served persistent trans-equatorial flow below Indone-
sia, in contradiction to the geostrophic assumption.
Whaler (1986)stated that any solution without up-
welling yields a statistically inadequate fit. She re-
marked that upwelling indicates local convection
strength. A poloidal–toroidal flow solution contains
twice as many free parameters as a toroidal flow, and
thus allows smaller data residuals. Authors that pre-
ferred poloidal–toroidal flow over pure toroidal flow
argued that the first is less energetic (Gire et al., 1986),
or its data residuals are significantly smaller (Voorhies,
1986). However, the poloidal flow component is less
well determined (Whaler, 1986; Voorhies, 1986). Gire
and LeMoüel (1990) found an equatorially-aligned
flow compatible with their geostrophic assumption.
Rau et al. (2000)found both toroidal and geostrophic
assumptions reasonable, with a preference for the lat-
ter.Gire and LeMoüel (1990)concluded that the secular
variation reflects the temporal behavior of the poloidal
flow, and the toroidal flow is responsible for exchang-
ing angular momentum between the core and the man-
tle. Jault et al. (1988)andJackson et al. (1993)found
good correlation between changes in the angular mo-
mentum of the core (inferred from core flow inver-
sions) to those inferred from variations in the length
of the day.Zatman and Bloxham (1997)interpreted
time-dependent zonal flows as torsional oscillations.
Rau et al. (2000)stressed that the limitation on the data
resolution due to crustal magnetization might cause
flow patterns with artifacts. They found that large scale
zonal flow and mid-latitude gyres are the most reliable
flow structures, and that they may represent an image
of columnar convection outside the tangent cylinder,
which is the imaginary cylinder parallel to the spin
axis and circumscribing the equator of the inner core
(Aurnou et al., 2003). Hulot et al. (2002)used the 2000
Oersted and 1980 Magsat satellite geomagnetic data
sets and found higher velocities in the Atlantic hemi-
sphere than in the Pacific one. They commented that
the large secular variations at high latitudes (especially
in the northern hemisphere) and below Africa could
not be predicted before the Oersted data. Their non-
axisymmetric flow displays vortices around the tangent
cylinder.

Different authors’ core flows contain different zonal
flows.Gire et al. (1984)found that a 0.2◦/year westward
drift is the dominant flow motion.Bloxham (1989)
found a westward drift less than 0.1◦/year. The so-
lution of Voorhies (1986)contains a bulk westward
drift with superimposed jets and gyres.Pais and Hu-
lot (2000)found large zonal angular velocities at high
latitudes (though not reliable) and an equatorially-
antisymmetric zonal flow outside the tangent cylin-
der.Hulot et al. (2002)found a westward equatorially-
symmetric flow of ∼0.1◦/year outside the tangent
cylinder, and westward polar vortices of∼0.9◦/year.
A similar polar vortex was found byOlson and Aurnou
(1999).

3. Physical assumptions for coupling toroidal
and poloidal motions

Eq. (10) contains two scalar variables, the potentials
Ψ andΦ. In order to invert this equation for the tan-
gential velocity at the top of the free stream below the
core-mantle boundary givenBr and∂Br/∂t, we make
one additional assumption to relate the two potentials.
We will show that this assumption removes the non-
uniqueness from the inversion problem.

3.1. Pure toroidal flow

A trivial way to couple toroidal and poloidal flows
is to assume that the flow is purely toroidal, so that

∇h · �uh = 0 (11)

According to this assumption, the surface flow is non-
divergent and can be expressed in terms of the stream-
function only, i.e. all terms withΦ in (10) vanish.

3.2. Tangential geostrophy

Another standard way to couple toroidal and
poloidal flows is to assume a geostrophic balance
for the tangential components of the fluid momen-
tum below the core-mantle boundary, i.e. Coriolis and
pressure gradient forces dominate the flow (LeMouël,
1984). This is the tangential geostrophy assumption,
and leads to the following constraint:

∇h · (�uh cosθ) = 0 (12)
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which can be rewritten as

cosθ∇h · �uh + �uh · ∇cosθ = 0 (13)

The expression for the radial upwelling becomes, ac-
cording to the tangential geostrophy assumption

∇h · �uh = tan θ

R
uθ (14)

which can be expressed in terms of the two potentials
Ψ andΦ using (6), (7) and (9) as

∇2
hΦ = tan θ

R2

(
1

sin θ

∂Ψ

∂φ
+ ∂Φ
∂θ

)
(15)

3.3. Helical flow

Here we introduce a third way to couple toroidal and
poloidal motions, by assuming a correlation between
tangential divergence and radial vorticity at the top of
the free stream below the core-mantle boundary. We
assume

∇h · �uh = ∓k0ζ (16)

whereζ is the radial vorticity andk0 is a positive con-
stant.Eq. (16) can be rewritten in terms of the potentials
Ψ andΦ using (8) and (9) as

∇2
hΦ = ∓k0∇2

hΨ (17)

The negative signs in (16) and (17) apply to the northern
hemisphere, and the positive signs apply to the southern
hemisphere. The sign difference in those two expres-
sions is attributed to the Coriolis force which deflects
motions to the right in the northern hemisphere and
to the left in the southern hemisphere. Therefore, up-
welling is associated with clockwise motion (negative
vorticity) in the northern hemisphere and with anti-
clockwise motion (positive vorticity) in the southern
hemisphere.

The type of correlation in (16) and (17) can be
viewed as the surface expression of a three-dimensional
flow which has the kinematic property of helicity, de-
fined as

H = �ζ · �u (18)

whereH is the helicity,�ζ the vorticity vector and�u
is the three-dimensional velocity. According to (18),
helicity appears in flows where there is a correlation
between vorticity and velocity vectors. Often (but not

always) the toroidal (or rotational) component of the
motion is responsible for the radial vorticity and the
poloidal (or convective) component of the motion is
responsible for the radial velocity. We call this type of
motion thehelical flow assumption(16). We note that
although the helicity vanishes on approach to the core-
mantle boundary, the existence of upwelling motion
correlated with vorticity implies non-zero helicity at
greater depths.

3.4. Columnar flow

A fourth way to couple toroidal and poloidal mo-
tions is to assume a columnar-type flow. According to
the Taylor–Proudman theorem, in a purely columnar
flow the velocity does not vary in the direction parallel
to the rotation, i.e.

( �Ω · ∇)�u = 0 (19)

where�u is again the full velocity vector and�Ω is the
rotation vector. In a sphere, the curved boundaries do
not allow the flow to be entirely independent of the�Ω-
direction. Still, the columnar nature of motions remains
a characteristic feature in convection in rapidly rotat-
ing fluid spheres (Busse, 1975), where these types of
flow structures are known as “Busse columns”. Linear
adjustment of columnar flow to spherical boundaries
yields the following upwelling term:

∇h · �uh = 2 tanθ

R
uθ (20)

A full development of (20) is given in Appendix A.
Note that this expression differs from the tangential
geostrophy upwelling expression (14) only by the fac-
tor 2. Eq. (20) can be rewritten in terms of the two
potentialsΨ andΦ using (6), (7) and (9) as

∇2
hΦ = 2 tanθ

R2

(
1

sin θ

∂Ψ

∂φ
+ ∂Φ
∂θ

)
(21)

3.5. Upwelling relationships in geophysical fluids

Because there is no way to directly determine the
relationship betweenΨ andΦ at the top of the Earth’s
core, we look to other geophysical fluid systems for
insight. Here we discuss several examples of upwelling
flows commonly found in rotating fluids.
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3.5.1. Examples of tangential geostrophy
Examples of tangential geostrophy are found in both

the ocean and the atmosphere. In the subtropical ocean,
the interior flow is governed by the Sverdrup relation
(Sverdrup, 1947; Salmon, 1998)

∇h · �uh = −β
f
uθ (22)

whereθ is co-latitude. The Coriolis parameterf and
its rate of change with co-latitudeβ are defined as

f = 2Ω cosθ (23)

β = ∂f

∂y
= ∂f

∂θ

∂θ

∂y
= −2Ω sin θ

R
(24)

wherey is the local Cartesian northward coordinate,Ω

the Earth’s rotation rate andR is the radius. Substitution
of (23) and (24) into (22) yields

∇h · �uh = 2Ω sin θ

2RΩ cosθ
uθ = tan θ

R
uθ (25)

Eq. (25) is identical to (14), i.e. the Sverdrup relation
is equivalent to the tangential geostrophy assumption.
Similar correlation between tangential divergence and
meridional velocity was also reported bySardeshmukh
and Hoskins (1987, 1988)for solutions to the vorticity
equation in the tropical atmosphere.

3.5.2. Examples of helical flow
There are numerous examples of helical flow in ro-

tating fluids. In the atmosphere for example, a high/low
pressure (in the northern hemisphere) is associated with
a clockwise/anticlockwise circulation, according to the
geostrophic balance. Deviation from this balance due
to friction at the ground yields downwelling/upwelling.
Therefore, the divergence of the tangential motion is
correlated with the vorticity in the vertical direction.
Velocity/vorticity correlation appears in observations
and in numerical simulations of atmospheric tropical
cyclones.Lilly (1986) found that long-lived stable ro-
tating storms in the atmosphere are characterized by
large values of helicity in both the storms and their
surrounding environment.

Helicity and the type of correlation in (16) are also
found in rotating convection. For example, at the on-
set of thermal convection in a plane layer of high
Prandtl number fluid heated from below with rota-
tion in the presence of a uniform vertical magnetic

field, the instability sets in as stationary convection.
For the case of convection between two free horizontal
boundaries, the depth-dependent vertical velocity, tan-
gential divergence and vertical vorticity are given by
(Chandrasekhar, 1961)

w = ±w0 sin
(πz
d

)
(26)

∇h · �uh = ∓w0
π

d
cos

(πz
d

)
(27)

ζ =
(

1

dE

)
π(π2 + a2)

(π2 + a2)2 +Qπ2
w0 cos

(πz
d

)
(28)

where z is the vertical Cartesian coordinate (anti-
parallel to gravity),d the depth of the fluid layer,w0
the vertical velocity atz = d/2,a the non-dimensional
convection cell width (a = kdwherek is the wave num-
ber),E the Ekman number (the ratio between viscous
to rotation forces) andQ is the Chandrasekhar num-
ber (the ratio between magnetic to viscous forces). The
upper sign in (26) and (27) applies to a northern hemi-
sphere geometry (anticlockwise rotation of the fluid
layer) and the lower sign applies to a southern hemi-
sphere geometry (clockwise rotation of the fluid layer).
The helicity for this flow is found by substituting (26)
and (28) into (18),

H = ±
(

1

dE

)
π(π2 + a2)

(π2 + a2)2 +Qπ2
w2

0

× cos
(πz
d

)
sin

(πz
d

)
(29)

In this example the helicity depends on depth. At the
boundaries (z = 0, d) and at midway (z = d/2) the he-
licity vanishes. In the northern hemisphere the helicity
is negative/positive in the upper/lower half of the fluid
layer, respectively. The ratio of the tangential diver-
gence to the vertical vorticity is, from (27) and (28),

∇h · �uh
ζ

= ∓k0 = ∓E
[

(π2 + a2)2 +Qπ2

(π2 + a2)

]
(30)

Note that the divergence/vorticity ratio in (30) is
independent of depth. In the northern hemisphere,
at the lower/upper half of the fluid layer, conver-
gence/divergence are associated with positive/negative
vorticity, respectively.

Two special cases of (30) deserve special note in this
context. First, in the case of no magnetic field (Q = 0,
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i.e. purely rotating convection),a→ (1/2π2)1/6E−1/3

in the limit of small Ekman number (Chandrasekhar,
1961). According to the Prandtl turbulence hypothe-
sis all the effective diffusivities are equal, i.e.,ν = λ =
1 m2/s, thereforeE � 10−9, and (30) givesk0 � 10−3.
Second, in the more general case where both rotation
and magnetic field are present,k0 is larger. For typical
core values ofE � 10−9 andQ � 109, Chandrasekhar
(1961)shows thata � √

1.5π at the onset of convec-
tion. Substituting these values into (30) givesk0 � 0.4,
within the range of values that we use in this paper.

Based on results from numerical dynamos, it has
been proposed that helicity is present in convection in
the outer core.Olson et al. (1999)found in dynamo
simulations columnar convection with large amounts
of helicity with opposite signs in the two hemispheres.
Results of convective dynamo simulations display a
constant of proportionality (∼0.07) between the tan-
gential divergence and the vertical vorticity of the fluid
flow at the outer core just below the core-mantle bound-
ary (Olson et al., 2002).

Another example of helical flow in rotating fluids
is an Ekman boundary layer. The horizontal velocity
components in a laminar Ekman layer with a top rigid
boundary are, in a local Cartesian coordinate system
(e.g.Kundu, 1990; Cushman-Roisin, 1994; Andrews,
2000)

u = U
[
1 − ez/δ cos

(z
δ

)]
(31)

v = ∓Uez/δ sin
(z
δ

)
(32)

whereu andv are thex (eastward) andy (northward)
velocity components respectively,U is they-dependent
zonal velocity far from the boundary layer, andz is
the vertical coordinate directed out of the boundary,
so thatz = 0 at the boundary andz < 0 at the interior
in (31) and (32). The negative sign in (32) applies in
the northern hemisphere and the positive sign applies in
the southern hemisphere. The thicknessδ of the Ekman
boundary layer is given by

δ =
√

2ν

|f0| (33)

whereν is the kinematic viscosity andf0 = 2Ω cosθ0
thef -plane approximation to the Coriolis parameter,
whereΩ is the Earth’s rotation rate andθ0 is the lo-

cal co-latitude. The depth-dependent horizontal diver-
gence and vertical vorticity derived from (31) and (32)
are

∇h · �uh = ∂u

∂x
+ ∂v
∂y

= ∓∂U
∂y

ez/δ sin
(z
δ

)
(34)

ζ = ∂u

∂y
− ∂v
∂x

= ∂U

∂y

[
1 − ez/δ cos

(z
δ

)]
(35)

The depth-dependent vertical velocity associated with
(34) is

w = −
∫ 0

z

∇h · �uh(z′) dz′

= ∓ δ
2

∂U

∂y

[
ez/δ

(
sin

(z
δ

)
− cos

(z
δ

))
+ 1

]
(36)

Substituting (35) and (36) into (18) gives the depth-
dependent helicity of the flow through an Ekman
boundary layer,

H = ζw = ∓ δ
2

(
∂U

∂y

)2 [
1 − ez/δ cos

(z
δ

)]

×
[
ez/δ

(
sin

(z
δ

)
− cos

(z
δ

))
+ 1

]
(37)

From (34) and (35), the ratio between horizontal diver-
gence and vertical vorticity in this case is

∇h · �uh
ζ

= ∓k0 = ∓ ez/δ sin(z/δ)

1 − ez/δ cos(z/δ)
(38)

As in the previous example of rotating convection, the
ratio between horizontal divergence and vertical vor-
ticity (38) is independent of the tangential coordinates.
In a rotating, convecting layer this ratio was also inde-
pendent of depth, whereas in an Ekman boundary layer
this ratio varies with depth.Fig. 1shows the normalized
helicity and the depth-dependent divergence/vorticity
ratio for an Ekman boundary layer in the northern
hemisphere geometry, according to (37) and (38). H
in (37) is negative/positive and the ratio in (38) is posi-
tive/negative throughout the northern/southern hemi-
sphere, respectively.k0 goes asymptotically to zero
far from the boundary layer (practically vanishes at
z � 3δ), andk0(z = δ) = 0.39. FromFig. 1 it is evi-
dent thatH andk0 are anti-correlated. The helicity is
large far from the boundary layer where velocity and
vorticity correlate, andk0 vanishes far from the bound-
ary layer due to the lack of horizontal divergence there.
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Fig. 1. Divergence/vorticity ratio and normalized helicity as a function of depth in an Ekman boundary layer in the southern hemisphere. Squares
denote the ratio between tangential divergence to radial vorticityk0 in (38), and diamonds denote the normalized helicity−H/[(δ/2)(∂U/∂y)2]
in (37).

The surface expression of such flow is largek0 values
due to the divergence/vorticity correlation, and the he-
licity vanishes at the surface where the flow becomes
two dimensional. Thus, we use the term “helical” to
describe a flow which has large helicity in the interior,
and its surface expression is the correlation between
tangential divergence and radial vorticity.

To summarize, the ratio between tangential diver-
gence and radial vorticity in helical flow changes sign
across the equator and is independent of the tangential
coordinates in both an Ekman boundary layer and rotat-
ing, convecting layer. However, the depth dependence
is different in the two situations. From these results,
we infer that the parameterk0 may be tangentially uni-
form in the core, but its depth-variation in the outer
core is uncertain. Therefore we test different values of
k0. For upwelling models such as strong helicity, tan-
gential geostrophy, and columnar flow, we use a small
value ofk0 = 0.1. In our test case, this value yields an
advective limit solution. We usek0 = 0.5 for the weak
helicity case to examine the effect of differentk0 values
on our solution.

3.6. General upwelling relationship

The helical flow and tangential geostrophy up-
welling terms can be superimposed, due to the linear
relationship between geostrophic and boundary layer
effects, similar to the superposition of pressure-driven
and stress-driven horizontal velocities in an Ekman

boundary layer. A general expression for the tangential
divergence that incorporates the helical flow (17), tan-
gential geostrophy (15), columnar flow (21) and pure
toroidal flow (11) assumptions is

∇ · �uh = ∇2
hΦ = ∓k0∇2

hΨ

+ c tan θ

R2

(
1

sin θ

∂Ψ

∂φ
+ ∂Φ
∂θ

)
(39)

where the negative sign in the first term on the right
hand side applies in the northern hemisphere and the
positive sign in the same term applies in the southern
hemisphere. Different values ofk0 andc in (39) define
all the physical assumptions discussed above:k0 = c =
0 for pure toroidal flow,k0 = 0 andc = 1 for tangential
geostrophy,k0 �= 0 andc = 0 for helical flow,k0 = 0
andc = 2 for columnar flow. Together, (39) and (10)
constitute a set of two equations for the two unknowns,
the potentialsΨ andΦ.

Two limits of (39) are worth noting. For large val-
ues ofk0 (and away from the equator), the first term
on the right hand side in (39) is dominant, yielding a
proportionality between surface divergence and radial
vorticity. In this limit, poloidal velocity sources coin-
cide with toroidal vortex centers. The other limit is for
small values ofk0 (and at low latitudes). In this limit,
the second term on the right hand side in (39), is dom-
inant. This correlation produces centers of divergence
where the meridional velocity is large.
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3.7. Non-uniqueness and “invisible” flow

Non-uniqueness in the inversion of the magnetic in-
duction equation occurs in situations where some com-
ponent of the flow is “invisible”, i.e. does not gener-
ate secular variation of its own (Backus and LeMoüel,
1986). For pure toroidal flow, motions parallel to con-
tours ofBr are “invisible”. For tangential geostrophy,
the flow is “invisible” along contours ofBr/ cosθ
which do not cross the equator (Chulliat and Hulot,
2000). Therefore, both assumptions have “invisible”
flows, but the non-uniqueness in tangential geostrophy
is confined to ambiguous patches and is more restricted
than in pure toroidal flow.

Here we derive an equation governing the “invisi-
ble” motion with the helical flow assumption included.
According to (1), the “invisible” flow consistent with
the frozen flux magnetic induction equation obeys

∇h · (Br�ui
h) = 0 (40)

where�ui
h denotes the “invisible” flow. The tangentially

non-divergent vectorBr�ui
h can be expressed in terms of

a scalar potentialΓ as follows (Backus, 1968; Backus
and LeMoüel, 1986):

Br�ui
h = ∇ × Γ r̂ (41)

According to (41), the tangential divergence of the “in-
visible” flow is given by

∇h · �ui
h = 1

Br
2R2 sin θ

(
∂Br

∂φ

∂Γ

∂θ
− ∂Br
∂θ

∂Γ

∂φ

)
(42)

Eq. (39) can be written using the “invisible” flow com-
ponents:

∇h · �ui
h = ∓k0r̂ · ∇ × �ui + c tan θ

R
ui
θ (43)

Substitution of the “invisible” velocity components de-
fined in (41) into the right hand side of (43), equating
with the right hand side of (42), and rearranging, yields(
∂Br

∂φ
± k0 sin θ

∂Br

∂θ

)
∂Γ

∂θ

−
(
∂Br

∂θ
+ cBr tan θ ∓ k0 1

sin θ

∂Br

∂φ

)
∂Γ

∂φ

= ±k0BrR2 sin θ∇h2Γ (44)

an equation for the scalarΓ with spatially-variable co-
efficients. For pure toroidal flow (i.e.k0 = c = 0), the
solution to (44) is Γ = Br, and for tangential geostro-
phy (i.e.k0 = 0,c = 1), the solution isΓ = Br/ cosθ,
as expected. For combined helical flow and tangential
geostrophy (i.e.k0 �= 0, c = 1), (44) is an elliptic par-
tial differential equation. According to the maximum
principle of E. Hopf, a non-constant solution of equa-
tions of this type can attain neither a maximum nor a
minimum at an interior point (Protter and Weinberger,
1967). All points are interior on a surface of a sphere,
so that only the trivial solution,Γ = constant, exists.
Therefore, the “invisible” flow defined by (41) is identi-
cally zero, i.e. the non-uniqueness associated with “in-
visible” flow is removed when helical flow is included.
This is a reason why solutions with the helical flow
assumption may contain more flow alongBr-contours
than do previous solutions.

4. Numerical method

For numerical solution, we rewrite (10) and (39) as
advection-diffusion equations forΨ andΦ of the form

∂Ψ

∂τ
= ∂Br

∂t
+ 1

R2 sin θ

(
∂Ψ

∂φ

∂Br

∂θ
− ∂Ψ
∂θ

∂Br

∂φ

)

+ 1

R2

(
∂Φ

∂θ

∂Br

∂θ
+ 1

sin2 θ

∂Φ

∂φ

∂Br

∂φ

)
+ Br∇2

hΦ

(45)

∂Φ

∂τ
= ∇2

hΦ−
(

∓k0∇2
hΨ + c tan θ

R2

×
(

1

sin θ

∂Ψ

∂φ
+ ∂Φ
∂θ

))
(46)

where τ is a relaxation variable and∂Br/∂t is the
source term. In (46), the coefficient−k0 applies in the
northern hemisphere, and+k0 applies in the southern
hemisphere. We useBr and∂Br/∂t on the core-mantle
boundary in (45) and (46), but like previous authors,
we interpretΨ andΦ at the top of the free stream be-
low the core-mantle boundary. We solve (45) and (46)
simultaneously for the two potentialsΨ andΦ using an
iterative technique, starting from initial conditionsΨ =
Φ = 0. The Laplacian operators act to diffuse the resid-
uals in (45) and (46) and allow the spatial variations
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of the time-like derivatives∂Ψ/∂τ and∂Φ/∂τ to con-
verge after a certain number of iterations. We use a
second order, central finite difference method on reg-
ular 5◦ × 5◦ and in one case 2.5◦ × 2.5◦ grids that
avoid the two poles and the equator. To verify that non-
uniqueness is practically removed, we solved (45) and
(46) using different initial conditions and obtained the
same final solutions.

It is well known that finite difference methods in
spherical coordinates often have problems at the poles.
We treat the polar points as follows. We calculate the
derivatives of the potentialsΨ andΦ at the latitude
points closest to the poles, using the value ofΨ andΦ
at the polar point itself in the finite difference formulas.
The values at the poles are then re-calculated as the
average of the values of the potentials over the closest
latitude grid line. With this method, streamlines are free
to cross (or not to cross) the poles.

The equator requires special treatment for the last
term in (46), which is singular there. Forc �= 0, (10)

Fig. 2. Streamfunction for the test case of a dipole magnetic field with instantaneous pole at [φ0, θ0] = [0,45 N] and rotating perpendicular to
the equatorial plane and parallel to theφ0 = 0 longitude line at a constant angular velocityω = 1◦/year, withk0 = 0.1.

and (39) at the equator reduce to

∂Ψ

∂φ

∣∣∣∣
eq

= − ∂Φ

∂θ

∣∣∣∣
eq

(47)

We add an hypothetical equatorial grid line to enforce
(47). Cross-equator values are used to calculate∂Φ/∂θ,
and then (47) is integrated to obtainΨ on the equator.
The equatorialΨ -values found this way are then used
to calculate∂Ψ/∂θ and∂2Ψ/∂θ2 at latitudes nearest to
the equator. We further approximate the last term in
(46) on the nearest latitudes to the equator using (47),
which becomes

∂Φ

∂τ

∣∣∣∣
eq

= ∇2
hΦ|eq

−
(

∓k0∇2
hΨ+c tan θ

R2

(
1

sin θ
−1

)
∂Ψ

∂φ

)∣∣∣∣
eq

(48)
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Our finite difference relaxation solution method has
some limitations. The coefficient∓k0Br, which acts
like a spatially-variable streamfunction diffusivity, has
to exceed some minimum value that depends on the
grid size in order to reach numerical convergence. Fur-
thermore,∓k0Br must maintain the same sign over the
entire grid, otherwise locally negative diffusivity will
produce numerical instability in those regions. To over-
come these limitations, we use a smoothed version for
Br only for the last term on the right hand side of (45), to
guarantee numerical stability in the vicinity of null flux
areas whereBr = 0 and inside reversed flux patches
whereBr changes sign.

4.1. Test case

In order to verify the reliability of our method, we
examine solutions of a synthetic test case. We choose
the simple case of a dipole magnetic field with its pole
located at latitudeθ0 and longitudeφ0 = 0, rotating

Fig. 3. rms absolute velocity as a function of iteration number for the tangential geostrophy case 1. The asymptotic curve verifies numerical
convergence.

along the longitudeφ0 = 0 at constant angular velocity
ω. The instantaneous radial magnetic field for this case
is given by

Br = cos(θ0 + ωt) cosθ

+ sin(θ0 + ωt) sin θ cosφ (49)

and the secular variation induced by the rotation is

∂Br

∂t
= −ω sin(θ0 + ωt) cosθ

+ω cos(θ0 + ωt) sin θ cosφ (50)

The streamfunction found by substituting (49) and (50)
into (45) and (46) usingk0 = 0.1, c = 0,ω = 1◦/year
andθ0 = 45 N is shown inFig. 2. This map conforms to
the expected pattern of uniform rotation perpendicular
to the equatorial plane and parallel to theφ0 = 0 longi-
tude. The magnitude of the flow is also nearly correct;
the average angular velocity has an error of 3.2%, com-
patible to the discretization error on the 5◦ × 5◦ grid.
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Various values ofω andθ0 were tested and produced
similar results to those shown inFig. 2 in terms of ac-
curacy of pattern and magnitude. This test case verifies
the convergence of (45) forΨ in its advective limit, i.e.,
small amounts of streamfunction diffusion (k0 = 0.1)
stabilize the solution and only slightly modify the pure
toroidal character of the flow. To verify the conver-
gence of (46), we check thatΨ satisfies the tangential
divergence expression (39). We have also verified this
convergence in each of our real data cases.

Fig. 3demonstrates the convergence of the solution
for our main flow case (which will be defined and dis-
cussed below). We plot the rms absolute velocity over

Fig. 4. Radial magnetic field (a) and secular variation (b) in 1990 on the core-mantle boundary. Grey scale represents absolute values, solid
lines are positive, dotted lines are negative. The 1990 magnetic field is the average of the 2000 Oersted and 1980 Magsat field models, and the
secular variation is their difference divided by 20 years.

the entire grid as a function of iteration number, which
shows the convergence to an asymptotic value.

5. Core flow cases

Fig. 4shows the radial geomagnetic field and secu-
lar variation models on the core-mantle boundary from
the 2000 Oersted and 1980 Magsat satellites, truncated
at spherical harmonic degree 14. The magnetic field
model for 1990 inFig. 4 is the average of the Oersted
and the Magsat field models, and the secular variation at
1990 is their difference divided by 20 years. These field
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Table 1
Maximum and mean velocities for different cases

Case Characterization k0 c , Maximum values (km/year) rms values (km/year)

utor upol uabs utor upol uabs

1 Tangential geostrophy 0.1 1 5 84.6 33.5 79.9 19.0 3.9 19.4
2 Sensitivity test 0.1 1 5 41.5 10.2 49.6 11.8 2.9 12.1
3 Resolution test 0.1 1 2.5 134.0 33.9 141.4 26.3 6.0 26.9
4 Strong helicity 0.1 0 5 83.0 36.3 84.2 21.0 2.2 21.1
5 Weak helicity 0.5 0 5 22.8 11.7 25.6 6.2 3.1 6.9
6 Columnar flow 0.1 2 5 130.3 46.8 173.4 21.7 8.5 22.2

k0 andc values refer toEq. (39),, is grid size in degrees.

models were used in (45) and (46) to obtain flow maps
that correspond to the cases described above: tangen-
tial geostrophy, strong and weak helicity, and columnar
flow.

Table 1defines the different flow cases and summa-
rizes the core-mantle boundary surface rms and maxi-
mum values for the various solutions. The values ofk0
andc define the various upwelling models used in each
case, according to (39). The characterization inTable 1
identifies the most important among the different terms
in the upwelling expression for each case. In case 1, a
small value ofk0 andc = 1 indicates that tangential
geostrophy is dominant. In case 2, the sensitivity of the
method is investigated by using a filtered model for the
secular variation with the same upwelling model as in
case 1. In case 3, we examine the effects of grid resolu-
tion using the same upwelling model as in case 1 but on
a finer grid. In case 4, a small value ofk0 andc = 0 sim-
ulates flow with strong helicity. In case 5, a relatively
largek0 value is used in order to provide the effect of
weak helicity. In case 6, a small value ofk0 andc = 2
means that columnar flow is the dominant source of
upwelling. Surface rms values are the surface average
of the absolute pointwise values, and maximum values
are the maximum absolute values. The quantitiesutor,
upol anduabsdenote the toroidal, poloidal and absolute
velocities, respectively.

The quality of convergence is defined by two mis-
fits. The first is the data misfit, defined as the ratio of
the rms data residual〈∂Ψ/∂τ〉 to the rms secular vari-
ation 〈∂Br/∂t〉 over the entire grid. The second is the
divergence misfit, the ratio of the rms tangential di-
vergence residual〈∂Φ/∂τ〉 to the rms tangential diver-
gence〈∇2

hΦ〉 over the entire grid.Table 2summarizes
the quality of the different solutions in terms of their
misfits.

We begin by describing our tangential geostro-
phy solution (case 1) and we compare it to tangen-
tial geostrophy solutions previously obtained by oth-
ers. We then use a sensitivity test to demonstrate the
robustness of our solution method with respect to
small-scale variations in the data (case 2). We then
show a resolution test in which we re-solve case 1
on a finer grid. We compare the flows from cases 1,
4–6 to investigate the effect of different upwelling
models. Finally, we focus on some areas in case 1
that illustrate different kinematic scenarios which lead
to the observed secular variation at the core-mantle
boundary.

5.1. Tangential geostrophy case

Fig. 5a shows the flow map for the tangen-
tial geostrophy case. We name this case “tangential
geostrophy” due to the dominance of the tangential
geostrophy assumption in (16), even though the up-
welling model in this case also includes the helical flow
term. The dominant features in the solution are a large
anticlockwise circulation in the southern hemisphere
centered beneath southern Africa and Antarctica, a
strong clockwise vortex centered below Bermuda, and
a westward drift sweeping most of the Atlantic southern

Table 2
Misfit values for different cases

Case Data misfit (%) Divergence misfit (%)

1 0.00 0.14
2 0.00 1.29
3 1.08 1.21
4 0.38 0.63
5 1.53 0.81
6 0.04 0.34
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Fig. 5. Flow map (a) and zonal velocity profile (b) beneath the core-mantle boundary for the tangential geostrophy case 1 fromTable 1. Contours
in (a) are streamlines of the flow, grey scale represents absolute upwelling value, with + and− signs indicate upwelling and downwelling,
respectively. In (b) the traditional 0.2◦/year westward drift value is marked by a vertical dashed line and the zonal flow ofHulot et al. (2002)is
shown by a dashed line for comparison.

hemisphere. The Atlantic hemisphere has overall
higher velocities than the Pacific, and the secular vari-
ation is also higher there (seeFig. 4b). Note that the
flow has a much larger length scale than does the secu-
lar variation. The solution contains a significant amount
of flow alongBr-contours. The average ratio of the ve-
locity component parallel toBr-contours to the velocity

component perpendicular to the same contours is about
1.2 (seeTable 3).

The solution inFig. 5ashows some cross-equator
flow. This flow is present in this solution for two
reasons. First, the tangential divergence includes
the helical flow assumption as well as tangential
geostrophy. Second, our grid skips the equator itself.
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Table 3
Velocity ratios for different cases

Case 〈�v‖〉/〈�v⊥〉 v
eq
θ /v

eq
φ Sym/skew

1 1.18 1.07 1.02
2 1.23 0.48 1.94
3 1.27 0.48 1.86
4 1.19 1.06 1.01
5 1.17 1.20 0.22
6 1.20 0.73 0.83

〈 〉 denotes the rms value over the entire grid.�v‖ and�v⊥ denote the
parallel and perpendicular velocity components, respectively, with
respect to the local direction of aBr contour.veq

θ andveq
φ denote the

meridional and azimuthal flow components, respectively, averaged
along the two closest latitudes to the equator. Sym/skew denotes the
ratio of equatorially symmetric to antisymmetric zonal flow.

The mean equatorial meridional/azimuthal ratio is
given inTable 3.

The solution contains intense vortices and jets.
A clockwise vortex below Siberia coincides with
an intense secular variation structure there (compare
Figs. 4b and 5a). A localized jet begins beneath the
Indian ocean, continues north-west beneath southern
Africa and can be traced westward into the South At-
lantic. This structure overlaps an intense secular varia-
tion bipolar structure aligned with the flow (again see
Figs. 4b and 5a). The strongest upwellings occur near
the equator, a consequence of the latitudinal depen-
dence in the tangential geostrophy term in (39). Away
from the equator, the upwellings are weaker and lo-
cated at vortex centers, a consequence of the helical
flow term in (39).

The zonal velocity profile for the tangential geostro-
phy case shown inFig. 5bdisplays equal amounts of
symmetry and antisymmetry with respect to the equator
(seeTable 3). Equatorial symmetry in the zonal veloc-
ity is consistent with a geostrophic force balance and
may indicate the existence of axisymmetric columnar
flow (Jault et al., 1988; Jackson et al., 1993). The zonal
angular velocity in mid-latitudes of the southern hemi-
sphere is in agreement with the traditional 0.2◦/year
westward drift value, but the zonal angular velocity
at other latitudes is smaller and, in places, eastward.
Fig. 5bincludes the zonal velocity profile obtained by
Hulot et al. (2002)for the same data sets. Note that
our solution is less symmetric than theirs with respect
to the equator. Our zonal velocity profile suggests rel-
atively strong westward polar vortices. However, due
to the small surface area of the polar cap with respect

to the data resolution, these structures are very uncer-
tain. The existence of polar vortices was argued on the
basis of numerical models (Olson and Aurnou, 1999),
flow inversions (Hulot et al., 2002) and lab experiments
(Aurnou et al., 2003). We find that westward polar vor-
tices are suggested, though not well resolved in our
solution. A local solution for the polar regions may
shed more light on this question.

5.2. Sensitivity test

The geomagnetic field and the secular variation
models we use are based on the Oersted and Magsat
data up to spherical harmonic degree 14. In order to
check the robustness of our solution with respect to
small changes in the geomagnetic field model, we per-
form the following sensitivity test. We smooth each ge-
omagnetic field model with a quarter cosine filter from
lmin = 1 tolmax = 13, meaning that thel = 1 spherical
harmonic is not filtered at all, the harmonicsl = 13 and
l = 14 are completely removed, and the intermediate
ones are progressively filtered (seeFig. 6a and b). This
type of filtering is intended to mitigate the increasing
uncertainty in the secular variation power spectrum at
high spherical harmonic degrees (Hulot et al., 2002).
The streamfunction and zonal velocity profile of the
sensitivity test using the same upwelling as in case 1
are shown inFig. 6c and d. The solution is a smoother
version of the non-truncated solution (compareFigs. 5a
and 6c), with the main features present in both cases.
We conclude on the basis of this test that our solu-
tion technique is robust for large flow structures, and
these large structures are relatively insensitive to short
wavelength errors in the secular variation model. How-
ever, using smoothed data substantially reduces smaller
structures such as the polar vortices and therefore those
should not be considered as very robust. The sensitivity
test case contains a more equatorially-aligned flow and
a more symmetric zonal flow with respect to the equa-
tor than the tangential geostrophy case 1 (seeTable 3
for comparison).

5.3. Resolution test

We have examined the effects of grid size on our
flow solutions using calculations made on a refined
2.5◦ × 2.5◦ grid, again avoiding the equator and poles.
The streamfunction and zonal velocity profile of this
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resolution test using the same upwelling as in case 1 are
shown inFig. 7a and b. Note that the contour interval is
different than the one inFig. 5a(see details in caption
of Fig. 7). The solution is much more energetic (see
larger velocity values inTable 1) and contains much
more small scale flow than the solution on the coarser
grid (compareFigs. 5a and 7a), but the large scale cir-
culation is similar in both cases. Two significant differ-
ences between cases 1 and 3 are worth noting. First, the
flow in the resolution test case is much more aligned
with equator (compareFigs. 5a and 7a, and also see
Table 3). Second, the resolution test case displays more

Fig. 6. Sensitivity test. Radial magnetic field (a), secular variation (b) on the core-mantle boundary, flow map (c) and zonal velocity profile (d)
beneath the core-mantle boundary for low-pass filter (quarter cosine fromlmin = 1 to lmax = 13) case 2 fromTable 1. In (a) and (b) grey scale
represents absolute values, solid lines are positive, dotted lines are negative. Note that the scale in (b) is magnified to depict the reduced secular
variation with respect to the unfiltered secular variation inFig. 4b. Contours in (c) are streamlines, grey scale represents absolute upwelling
value, + and− signs indicate upwelling and downwelling, respectively. The contour interval in (c) is the same as inFig. 5a.

symmetry in the zonal flow with respect to the equator
than the tangential geostrophy case (compareFigs. 5b
and 7b, and also seeTable 3); the symmetric part of the
flow in the resolution test case is about two times larger
than the anti-symmetric part. Equatorial symmetry in
the zonal flow is critical in the interpretation of length
of day variations in terms of time dependent core flows
(Jault et al., 1988; Jackson et al., 1993), and is also
found in numerical dynamo simulations (Christensen
et al., 1999). Fig. 7b includes the zonal velocity pro-
file obtained byHulot et al. (2002)for the same data
sets.
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Fig. 6. (Continued).

5.4. Comparison between different physical
assumptions

Fig. 8 shows the solutions for the strong helicity
(case 4), weak helicity (case 5) and columnar flow (case
6) cases. Note that the contour intervals vary from one
figure to another (see details in caption ofFig. 8). Most
of the major features are found in the solutions for the
different physical assumptions, but there are some case-
to-case differences.

The toroidal flow patterns in the tangential geostro-
phy (case 1,Fig. 5a) and the strong helicity (case 4,
Fig. 8a) are very similar. The main difference between
the two cases is in the upwelling pattern. The global
upwelling pattern in the strong helicity case is evenly
distributed over the core-mantle boundary, whereas in
the tangential geostrophy case the largest upwellings
appear in the equatorial region, a consequence of
the singularity of the tangential geostrophy term at
the equator. To illustrate this difference, consider the
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Fig. 7. Resolution test. Flow map (a) and zonal velocity profile (b) beneath the core-mantle boundary for a finer grid case 3 fromTable 1. Contours
in (a) are streamlines of the flow, grey scale represents absolute upwelling value, with + and− signs indicate upwelling and downwelling,
respectively. The contour interval in (a) is larger by a factor of 2 than inFig. 5a. In (b) the zonal flow ofHulot et al. (2002)is shown by a dashed
line for comparison.

positiveBr structure below central Africa (seeFig. 4a).
This structure is stretched to the west, and as a result, a
positive secular variation structure appears to its west
(below the west coast of central Africa, seeFig. 4b),
but no significant secular variation structure appears to
its east, as would be expected from plain advection.
Our solutions recover this secular variation monopole
by stretching, caused by downwelling centered below
the west coast of central Africa. This downwelling is

produced by a weak southward flow in the tangential
geostrophy case (seeFig. 5a), or by a strong clockwise
vortex in the strong helicity case (seeFig. 8a). In both
cases the motion is connected to the global circulation
by eastward jet alongBr-contours. This eastward flow
produces some stretching of the magnetic field without
effects of advection.

The flow pattern of the weak helicity (case 5,Fig. 8c)
has elements in common with the strong helicity case,
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although the velocity field of the weak helicity case is
more strongly damped and has smaller velocities over-
all (seeTable 1for maximum and rms values).

The columnar flow solution (case 6,Fig. 8e) is
also similar to the tangential geostrophy solution (case
1), with the main difference being that the columnar
flow solution is more aligned with the equator. As a
result, the zonal velocity in the columnar flow case
has larger equatorial amplitudes (eastward at south-
ern hemisphere, westward at northern hemisphere) than

Fig. 8. Flow maps beneath the core-mantle boundary for the strong helicity (a) case 4, weak helicity (c) case 5 and columnar flow (e) case 6
(all cases fromTable 1). Zonal velocity profiles for the three cases are presented at (b), (d) and (f), respectively. Contours in (a), (c) and (e)
are streamlines, grey scale represents absolute upwelling value, + and− signs indicate upwelling and downwelling, respectively. The contour
interval in (a) is the same as inFig. 5a, in (c) is smaller by a factor of 1.6 than inFig. 5a, and in (e) is larger by a factor of 1.2 than inFig. 5a.

the tangential geostrophy case (compareFigs. 8f and
5b).

The ratio of poloidal to toroidal velocities scales
with the coefficientk0 in the strong and weak helic-
ity cases, and with the coefficientc in the tangential
geostrophy and columnar flow cases. In the strong
helicity case, the secular variation can be explained
by toroidal advection and stretching, whereas in other
cases there is also a contribution to the secular variation
from poloidal advection.
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Fig. 8. (Continued)

The ratio of average flow component alongBr-
contours to the average flow component perpendic-
ular to the same contours is about 1.2 for all cases
(Table 3), indicating a significant amount of such flow.
Cross equatorial flow occurs least in the columnar
flow case and most in the weak helicity case (again,
Table 3).

Figs. 5a and 8a, c, eshow little evidence of non-
axisymmetric Taylor columns, i.e. vortices of opposite
sign symmetric about the equator. These may be ob-
scured by the axisymmetric flow, or, the scale of such
non-axisymmetric Taylor columns of fluid might be

very small and “unseen” in the resolution of the data.
Another possibility is that the Taylor columns are ax-
isymmetric and can only be seen in the zonal angular
velocity profiles (Figs. 5b and 8b, d, f), which do dis-
play some equatorial symmetry. The ratio of the sym-
metric zonal flow with respect to the equator to the anti-
symmetric one is given inTable 3. Note that the tangen-
tial geostrophy and strong helicity cases both contain
about equal amounts of zonal symmetric and antisym-
metric flow components with respect to the equator,
whereas the zonal flow of the weak helicity case is
very antisymmetric.
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Fig. 8. (Continued).

5.5. Comparison with previous results

Here we compare the results of our tangential
geostrophy case with the results obtained byHulot et
al. (2002)using the same Oersted and Magsat geomag-
netic data. We further discuss some general conceptual
differences between our solutions and previous ones,
in terms of the differences between our method and
previous spectral methods.

Our global circulation has some features in common
with that obtained byHulot et al. (2002): the Atlantic
hemisphere is more active than the Pacific one, some
symmetry in the zonal velocity profile with respect to
the equator and similar westward drift in mid-latitudes
of the southern hemisphere. However, our solution dif-
fers from the solution obtained byHulot et al. (2002)in
several features. Our average westward drift is some-
what less than theirs and our zonal flow is actually
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Fig. 9. Magnetic field at 1980 (dashed lines) and 2000 (solid lines), and velocity vectors (arrows) for specific areas.Br = 0 curves are shown
as dotted curves in the two cases. (a) below Madagascar, showing full velocity, and (b) below Ethiopia, showing poloidal velocity.
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eastward in places where theirs is westward. Also our
solution contains significantly more flow alongBr-
contours thanHulot et al. (2002).

Most previous solutions restricted the scale of their
flow solution by setting some a-priori constraint on the
energy spectrum. Our method does not rely on a-priori
constraints; instead a solution is provided by diffusion
of the streamfunction through the helical flow term.
Previous spectral methods minimized “invisible flow”,
whereas ours allows for such flow where it is required
by the helical flow assumption. In our method, the
amount of flow alongBr-contours is specified by the
amount of helicity assumed, through the value of the pa-
rameterk0. Previous studies found maximal upwelling
values of∼2–4 century−1 (e.g.Gire et al., 1986; Gire
and LeMoüel, 1990; Bloxham and Jackson, 1991). We
obtain similar upwelling magnitudes in the strong and
weak helicity cases, as well as in the sensitivity test case
(see scales atFigs. 6c and 8a, c). However, the singu-
larity in the tangential geostrophy term at the equator
yields local stronger upwellings in the equatorial re-
gion for the tangential geostrophy case (see scale at
Fig. 5a).

5.6. Specific areas of interest

Here we examine some specific areas of interest
from the tangential geostrophy case, which show how
the kinematics in our flow solution creates particular
structures in the secular variation.

Fig. 9ashows the radial magnetic field on the core-
mantle boundary at 1980 and 2000 and the full veloc-
ity vectors in the region below Madagascar, obtained
from the tangential geostrophy case 1. Note the gen-
eral consistency between the translation of theBr = 0
curve and the velocity vectors. The secular variation
in this area can be accounted for by simple advection
of Br by toroidal velocity. The center of negative mag-
netic field structure shifts from (43◦E,35◦S) at 1980
to (37◦E,28◦S) at 2000, approximately a 9◦ transla-
tion to the north west in 20 years. The velocity field at
this region includes a jet to the north west with max-
imum velocity of 68.6 km/year, which corresponds to
translation of about 10◦ in 20 years.

Fig. 9bshows the radial magnetic field on the core-
mantle boundary from the same epoch asFig. 9a, along
with the poloidal velocity vectors in the region below
Ethiopia, again from case 1. In this region the contours

of Br show a broad ridge structure in 1980 centered
at 34◦E. By 2000, this ridge structure has been trans-
lated to 28◦E, and also has been sharpened. The secular
variation in this area can be accounted for by stretch-
ing of magnetic field due to an upwelling. The poloidal
velocity indicates the direction in which the stretching
operates. Two centers of meridional velocity, which are
sources of upwelling and surface divergence due to the
tangential geostrophic effect, appear in the solution at
(35◦E,12◦N) and (0◦E,5◦N). Those sources are lo-
cated on both sides of the ridge structure and produce
the poloidal velocities and the stretching responsible
for the contraction ofBr contours at this region.

6. Summary

We have used geomagnetic secular variation data to
image the fluid flow below the core-mantle boundary
by combining a previously-used assumption for the up-
welling, tangential geostrophy, with a new helical flow
assumption. The latter introduces streamfunction diffu-
sion in the magnetic induction equation, and allows us
to compute the fluid velocity at the top of the core using
finite difference methods on a regular grid. Our method
does not require any a-priori assumption about the en-
ergy or lengthscale of the flow. Our method simulta-
neously minimizes the secular variation data residual
and guarantees that the resulted flow satisfies the phys-
ical assumption everywhere on the grid. We have used
the 2000 Oersted and 1980 Magsat core geomagnetic
fields. For this 20 years interval, our main findings
are:

• The main flow structures common to all our up-
welling models include a large anticlockwise cir-
culation in the southern hemisphere, a clockwise
vortex below Bermuda, and a westward flow over
most of the southern hemisphere.

• Our solutions contain a significant amount of flow
alongBr-contours. The ratio of the average veloc-
ity component parallel toBr-contours to the average
velocity component perpendicular to the same con-
tours is about 1.2.

• The zonal average westward drift rate in mid-
latitudes of the southern hemisphere is in agreement
with the traditional 0.2◦/year value, but the drift is
smaller and even eastward at other latitudes.
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• The signature of the inner core tangent cylinder is
apparent in the zonal velocity profile. Polar vortices
are suggested, though not well resolved in our mod-
els.

• The large scale flow in the high resolution test is
qualitatively similar to the large scale flow seen with
coarser resolution, but also shows some substan-
tial differences. For example, in the higher resolu-
tion case the ratio of equatorial symmetric to anti-
symmetric zonal flow is about 2, whereas this ratio
is about 1 with coarser resolution. This difference
indicates a need for core flow models with higher
spatial resolution.

• In all cases we investigated, the Atlantic hemisphere
displays higher flow velocities than the Pacific.

Some of the main features of our results are similar
to previous core flows obtained with the same data
by Hulot et al. (2002). The results of our tangential
geostrophy case contain strong mid-latitude vortices,
westward drift sweeping most of the southern hemi-
sphere, flow in the Atlantic hemisphere is more intense
than in the Pacific and suggested (though not reliable)
strong polar westward vortices. The flows we calculate
are characterized by relatively large length scales,
despite the dominance of high wavenumber structure
in the secular variation. However, our solution differs
from previous ones in some important aspects. Our
solutions contain a significant component of flow along
Br-contours; this component of flow is constrained
by the helical flow assumption.Hulot et al. (2002)
obtained westward drift in both hemispheres, whereas
our solution contains smaller and in some latitudes
eastward drift.

Due to the helical flow assumption, the structure
of the poloidal flow in our solutions is different from
than in previous studies. Near the equator, the tangen-
tial geostrophy assumption is dominant, and poloidal
flow sources are located in regions of meridional flow.
However, far from the equator, the helical flow domi-
nates, and poloidal flow sources coincide with centers
of vortices.
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Appendix A. Columnar flow upwelling

Columnar flow is defined in (19) as a horizontal
translation of a column of fluid as a whole; i.e. the
velocity does not vary in the direction parallel to the
rotation. In a sphere, the curved boundaries do not allow
for such a flow. An approximation to columnar flow in
a sphere is a fluid column which is stretched/shrunk as
it moves along the cylindricals-direction. Assuming
uniform stretching and no-flux boundary conditions,
the relationship between the velocity components in
cylindrical coordinatesus anduz should be linear, so
that everywhere along the fluid column

uz = −ηz
L
us (A.1)

whereη = s/√R2 − s2 is the slope of the spherical
shell,L = √

R2 − s2 is half the height of the column
andR is the sphere’s radius. This assumption implies
that the relative position of a particle in the fluid column
is conserved. The ratiouz/us on the boundary equals
the slope of the spherical shell to satisfy the bound-
ary conditions, anduz = 0 at the equator (symmetry).
Eq. (A.1), together with the incompressible continuity
equation, describe incompressible columnar flow in a
sphere in cylindrical coordinates. Our goal is to express
the radial upwelling term (∂ur/∂r) on the boundary
in spherical coordinates. Using conversions between
spherical and cylindrical coordinate systems

uz = ur cosθ − uθ sin θ (A.2)

us = uθ cosθ + ur sin θ (A.3)

and some algebraic manipulation, (A.1) becomes,

ur(cosθ + x sin θ) = uθ(sin θ − x cosθ) (A.4)

where

x = ηz

L
= r2 sin θ cosθ

R2 − r2 sin2 θ
(A.5)

Differentiation of (A.4) by r and evaluation atr = R
yields the upwelling term in spherical coordinates for
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a columnar flow in a sphere:

∂ur

∂r
(r = R) = −2 tanθ

R
uθ (A.6)

Using the incompressible continuity equation, the tan-
gential divergence due to a columnar flow is

∇h · �uh = 2tanθ

R
uθ (A.7)
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