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A B S T R A C T   

We use rotating convection simulations in a thin spherical shell to study fluid dynamics in subsurface oceans of icy moons. We find two types of persistent results, 
characterized by larger outer boundary heat flux either at polar regions or at the equatorial region. Simulations corresponding to larger Rossby numbers result in 
polar cooling with moderate lateral heterogeneity in heat flux, whereas lower Rossby numbers give equatorial cooling with more pronounced heat flux heterogeneity. 
The polar cooling scenario is in agreement with inferences for the heat flux at the top of Titan’s ocean, which may provide a dynamical constraint for the vigor of 
convection in this layer. Our results may help unraveling the internal dynamics and the interactions among the different layers within the hydrosphere of Titan. 
Possible implications for the deep interiors of other icy moons are envisaged.   

1. Introduction 

Many water rich planetary bodies in the outer solar system are 
considered to be “ocean worlds” in the sense that these bodies likely 
harbor global layers of liquid water beneath their surface ice shells (cf. e. 
g. Nimmo and Pappalardo, 2016). Early inferences for the possible 
presence of internal oceans buried in distant moons relied on thermal 
evolution models (in the case of Jupiter’s satellites Ganymede and 
Europa, for example, cf. Kirk and Stevenson, 1987, Ojakangas and Ste-
venson, 1989). Geophysical measurements by the Galileo and Cassini- 
Huygens missions involved various techniques for detecting buried 
oceans. Owing to Jupiter’s detectable dipole tilt, magnetic induction 
enabled to identify global scale conductive layers in the major icy moons 
orbiting in the magnetosphere, most notably Europa (Khurana et al., 
2002; Zimmer et al., 2000). For Ganymede, a more ambiguous mea-
surement due to the presence of an internal dynamo (Kivelson and 
Khurana, 2002) was later confirmed by Earth-based observation of 
auroral oscillations (Saur et al., 2015). In the system of Saturn, evidence 
for internal oceans was found at three moons, Titan, Enceladus and 
Mimas, and internal oceans are suspected in two other moons, Dione and 
Rhea. For Titan, the presence of an internal ocean was confirmed by 
three independent observations: electric signals measured by the 

Huygens probe during its descent through Titan’s atmosphere (B�eghin 
et al., 2012, 2010), obliquity three times larger than expected (Baland 
et al., 2014, 2011) and gravitationnal tides (Iess et al., 2010; Mitri et al., 
2014). For Mimas and Enceladus, the existence of a global ocean was 
determined from the detection of libration (Tajeddine et al., 2014; 
Thomas et al., 2016). For Mimas, the observed libration could also be 
explained by a very elongated rocky core, so that the existence of an 
ocean is not certain (Tajeddine et al., 2014). In the case of Enceladus, the 
existence of a global ocean is also consistent with the observed topog-
raphy and graviy fields (Beuthe et al., 2016; �Cadek et al., 2016; Hemi-
ngway et al., 2018). Such oceans constitute at present some of the most 
promising of potentially habitable extraterrestrial environments and 
two ambitious planetary missions to come are devoted to their charac-
terization: ESA’s JUICE scrutinizing Ganymede (Grasset et al., 2013) 
and NASA’s Europa Clipper (Phillips and Pappalardo, 2014). 

Observations of non-water compounds at Europa’s surface (Ligier 
et al., 2016; McCord et al., 2002) and in ejected icy grains at Enceladus 
(Hsu et al., 2015, 2018; Postberg et al., 2009, 2011) suggest chemical 
transport from the ocean seafloor up to the surface. However, the 
practical means by which the oceans convey this signature are uncer-
tain. Convection in Europa’s buried ocean was considered in the light of 
localized heating at its seafloor in a weakly stratified ocean (Thomson 
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and Delaney, 2001). Their scaling analysis of rotationally confined in-
stabilities is further constrained by dedicated experiments (Goodman 
et al., 2004). Vance and Goodman (2009) set such mechanisms in the 
more general context of an uncertain Europan oceanography, including 
global scale convecting and rotating flow. Double diffusive convection is 
also envisioned (Vance and Brown, 2005). 

Although often with a thick shell in the context of Earth’s outer core, 
the pattern of convection and heat transport in rapidly rotating spherical 
shells at onset and their dependence on control parameters have been 
thoroughly explored (for a review see e.g. Aurnou et al., 2015). Dormy 
et al. (2004) identified the onset of convection at the edge of the tangent 
cylinder for any spherical shell thickness. Zhang and Jones (1993) found 
that an Ekman boundary layer that is formed where axial convective 
rolls impinge the outer boundary destabilizes/stabilizes convection 
when viscous/thermal dissipation dominates, respectively. Tilgner and 
Busse (1997) observed that when convection vigor is enhanced the heat 
transport across the shell increases, in particular at polar regions. Gas-
tine et al. (2016) conducted a systematic parametric study of convection 
in a rotating spherical shell of aspect ratio 0.6. They established scaling 
laws that separate different convective regimes. 

Soderlund et al. (2014) modelled rotating convection in a thin 3D 
spherical shell for a subsurface ocean. They found latitudinal depen-
dence of heat transfer. In the case of Europa, this effect may explain the 
preferred occurrence of specific surface features (chaos terrains, salt 
deposits) at moderate latitudes. In thin, rapidly rotating ocean shells the 
outer boundary heat flux is expected to be concentrated at low latitudes 
(Miquel et al., 2018). Other efforts to relate the global ice shell structure 
of ocean worlds to ocean dynamics have focused on ice shell melting, e. 
g. in the case of Europan chaos-type features (Thomson and Delaney, 
2001), Titan (Kvorka et al., 2018) or Enceladus (�Cadek et al., 2019), but 
the possible lessons on ocean dynamics and heat transfer are only 
preliminary. 

In this context, we follow the approach initiated by Soderlund et al. 
(2014) to better characterize the dynamics of buried oceans at a global 
scale. We present simulations of thermal convection of a rotating fluid in 
a thin spherical shell for a range of control parameters. We focus on the 
resulting heat flux pattern at the top of the shell. Due to computational 
limitations (e.g. Glatzmaier, 2002) the explored control parameters are 
very remote from the actual values in buried oceans — some projections 
of our results thus require extrapolation (as is the case for most rapid 
rotation applications, cf. Aubert et al., 2017). 

The paper is outlined as follows. In Section 2, we detail our method. 
Our results are analyzed in Section 3. We place our models in the ex-
pected dynamical regime based on previous literature (Section 4) and 
then compare the results from our simulations to inferences from Cas-
sini’s observations for the heat flux at the top of Titan’s ocean (Section 
5). Finally, we discuss the main results and their implications for Titan’s 
ocean (Section 6). 

2. Method 

We simulate rotating convection in a thin spherical shell. The impact 
of the shell thickness on the convection style is not trivial. In the case of 
rapidly rotating models, Miquel et al. (2018) found that the determining 
parameter to characterize the vigor and extent of low-latitude convec-
tive trapping combines the geometry and rotational effects. When 
thermal forcing is enhanced, convection emerges inside the tangent 
cylinder (e.g. Tilgner and Busse, 1997); hence, the shell thickness which 
dictates the surficial extent of the tangent cylinder becomes an impor-
tant factor. Deep liquid systems encompass a variety of shell thicknesses. 
In Table 1, we list the shell thicknesses and the corresponding relative 
tangent cylinder surfaces of some of these systems. Here, we term a shell 
“thin” as one that its inner to outer radii ratio ri/ro is significantly larger 
than e.g. that of Earth’s outer core resulting in a relative tangent cyl-
inder surface about an order of magnitude larger than that of Earth’s 
outer core. 

The numerical models solve the following set of self-consistent non- 
dimensional Boussinesq hydrodynamics equations for thermal convec-
tion of a fluid in a rotating spherical shell:  

E
�

∂ u!

∂t
þ u!⋅r u!� r2 u!

�

þ 2ẑ� u!þrP ¼ Ra�
r!

ro
T (1)  

∂T
∂t
þ u!⋅rT ¼

1
Pr
r2T (2)  

r⋅ u!¼ 0; (3)  

where u! is velocity, T is temperature, t is time, ẑ is a unit vector in the 
direction of the rotation axis, P is pressure and r! is position vector. 
Three non-dimensional parameters in Eqs. (1)– (3) control the dynamics. 
The modified Rayleigh number Ra* represents the strength of buoyancy 
force driving the convection relative to retarding forces  

Ra� ¼
αg0ΔTD

νΩ
; (4)  

where α is thermal expansivity, g0 is gravitational acceleration on the 
outer boundary at radius ro, ΔT is the fixed temperature difference be-
tween the inner and outer boundaries, D is shell thickness, ν is kinematic 
viscosity and Ω is the rotation rate. The Ekman number represents the 
ratio of viscous and Coriolis forces  

E ¼
ν

ΩD2: (5)  

The Prandtl number is the ratio of kinematic viscosity to thermal 
diffusivity  

Pr ¼
ν
κ
; (6)  

where κ is thermal diffusivity. The modified Rayleigh number Ra* is 
related to the conventional Rayleigh number by Ra* ¼Ra ⋅ E/Pr, where 
the conventional Rayleigh number Ra is given by  

Ra ¼
αg0ΔTD3

νκ
: (7)  

To dimensionalize the solutions velocity is scaled by D/ν, time by D2/ν 
and temperature by ΔT. 

Some relevant output parameters are monitored. The Reynolds 
number which represents the ratio of inertial to viscous forces is 
calculated based on the rms velocity U in the volume of the shell  

Re ¼
UD
ν (8)  

and the Rossby number represents the ratio of inertial to Coriolis forces 

Ro ¼
U

ΩD
¼ Re⋅E: (9) 

Table 1 
Deep liquid systems, their aspect ratio and relative tangent cylinder surface. 
Ranges for Mercury’s core are based on combinations of the first and third 
quartiles of Hauck et al. (2018), see their Table 5. For comparison we give the 
values for our models in the last line.  

System ri/ro Sh/S Reference 

Mercury’s core 0.15 � 0.50 0.01 � 0.13 Hauck et al. (2018) 
Earth’s core 0.35 0.06 Dziewonski and Anderson 

(1981) 
Titan’s ocean 0.84 � 0.96 0.46 � 0.72 Vance et al. (2018) 
Enceladus’ 

ocean 
0.78 � 0.90 0.37 � 0.56 �Cadek et al. (2019) 

Europa’s ocean 0.92 � 0.94 0.61 � 0.66 Vance et al. (2018) 
Pluto’s ocean 0.94 0.66 Gabasova et al. (2018) 
Our models 0.8 0.4   
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The magnitude of the heat flux anomaly on the outer (or inner) 
boundary q�o (or q�i ) is defined as the ratio of the peak-to-peak amplitude 
of the zonal part of the heat flux to twice the mean heat flux:  

q� ¼
qz

max � qz
min

2q0
; (10)  

where z superscript corresponds to “zonal”, i.e. averaging over latitude 
lines. This definition differs from the more common definition based on 
the 2D heat flux distribution and applied to large-scale input patterns (e. 
g. Olson and Christensen, 2002), while alternative definitions were used 
for localized patterns (for a review see Amit et al., 2015). Here, we use 
the zonal heat flux in order to avoid bias from small-scale longitudinal 
variability which might arise solely due to the finite simulation time of 
the runs. 

The tangent cylinder effect is also quantified. We calculate the 
normalized difference between the time-average outer boundary heat 
flux inside to outside the tangent cylinder as follows:  

< qo>
h=l ¼

< qo>
h� < qo>

l

< qo>hþ < qo>l; (11)  

where the mean heat flux inside the tangent cylinder, denoted by h su-
perscript (for higher latitudes), is  

< qo>
h ¼

1
2Sh

�Z 2π

0

Z θtc

0
qoðϕ; θÞdS þ

Z 2π

0

Z π

π� θtc

qoðϕ; θÞdS
�

(12)  

and the mean heat flux outside the tangent cylinder, denoted by l su-
perscript (for lower latitudes), is  

< qo>
l ¼

1
Sl

Z 2π

0

Z π� θtc

θtc

qoðϕ; θÞdS: (13)  

In Eqs. (12) –(13), Sh and Sl are the outer boundary spherical surface 
areas inside and outside the tangent cylinder respectively, θtc is the co- 
latitude where the tangent cylinder intersects the outer boundary in 
the northern hemisphere given by sinθtc ¼ ri=ro and the spherical surface 
increment is dS ¼ r2sinθdϕdθ (for a schematic illustration see Fig. 1). 
The ratio < qo >

h/l (Eq. (11)) has some desired properties. For polar/ 
equatorial cooling, it is positive/negative respectively, i.e. its sign in-
dicates which cooling dominates. In addition, if one of the two coolings 
is much stronger < qo >

h/l will approach �1 whereas if the two coolings 
are comparable it will approach zero, i.e. its magnitude reflects the 
amplitude of the tangent cylinder effect. 

The transition to a more turbulent regime may be marked by 
different non-dimensional numbers (see Soderlund et al., 2014, and 
references therein). Apart from the conventional Rossby number Ro (Eq. 
(9)), alternatives include the convective Rossby number  

Roc ¼

�
RaE2

Pr

�1=2

; (14)  

the local convective Rossby number  

Roloc ¼ Ra5=4E2 (15)  

and a ratio representing a competition between thermal and rotational 
boundary layers  

Ra
�

RaT ¼ 0:1RaE3=2 (16)  

where RaT is a transitional Rayleigh number in water. 
We use the code MAGIC by Johannes Wicht (Wicht, 2002). We 

analyze hydrodynamic (i.e. non-magnetic) models with rigid isothermal 
boundary conditions. We focus on the dynamics in relatively thin shells 
which are relevant for subsurface oceans of icy satellites. A summary of 
model control parameters, geometries and some output parameters is 
given in Table 2. 

Note that our control parameters are far from being realistic due to 
computational limitations (e.g. Glatzmaier, 2002). In particular, the 
Ekman number in our models is far too large. Recent geodynamo sim-
ulations have reached significantly smaller Ekman numbers (Aubert 
et al., 2017; Schaeffer et al., 2017), though limited to relatively short 
runs. Our choice of larger E values allows for sufficiently long simula-
tions characterized by decent statistical convergence towards mean-
ingful time-average patterns. In addition, as we will show in the next 
section, despite the relatively larger Ekman numbers our models cover 
the two endmember patterns of the outer boundary heat flux. 

3. Results 

Fig. 2 shows some images from an arbitrary snapshot of the large- 
scale case 1. Despite the large Ekman number, the moderate Rayleigh 
number leads to dynamics that is nevertheless affected by rotational 
effects. In our models, convection is organized in equatorially symmetric 
axial columns (e.g. Busse, 1970, Taylor, 1917). This is evident in the 
form of north-south elongated radial vorticity (Fig. 2b) and heat flux 
(Fig. 2d) structures just below and on the outer boundary respectively, 
which result from deep meridional flow structures that are parallel to 
the rotation axis (Fig. 2c). The inner/outer radii ratio of 0.7 corresponds 
to a tangent cylinder intercepting the outer boundary at latitudes 46�. 
Indeed, the north-south elongated outer boundary heat flux and radial 
vorticity structures extend until about this latitude, while at higher 
latitudes convection is weaker. The axial convective columns and the 
tangent cylinder signature testify for the influence of rotation in the 
dynamics of this model. 

Fig. 3 shows the same images for a long-term time-average of the 
same case. As expected, time-averaging smooths most of the small-scale 
longitudinal variability. The axial invariance of the flow (Fig. 3c) and 
the tangent cylinder effect (Fig. 3b) are clearly evident. The outer 
boundary heat flux is larger/lower at the equator/poles respectively 

Fig. 1. Schematic illustration of the tangent cylinder geometry. The rotation 
rate Ω denotes the rotation axis, the horizontal line is the equatorial plane, red 
vertical lines denote the tangent cylinder. ri and ro are the inner and outer radii, 
respectively, θtc is the co-latitude where the tangent cylinder intersects the 
outer boundary in the northern hemisphere, Sh and Sl are the outer boundary 
spherical surface areas inside and outside the tangent cylinder, respectively 
(represented by arcs in this schematic cross-section). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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(Fig. 3d), which we term “equatorial cooling” (following Heimpel and 
Evans, 2013). 

The corresponding instantaneous and time-average distributions of 
inner boundary heat flux anomalies are given in Figs. 2e and 3e, 
respectively. The inner boundary heat flux anomaly is also positive at 

low-latitudes and negative at high-latitudes. The axial columnar flow 
touches the inner boundary in the equatorial plane and it is there where 
the heat is most effectively extracted from the inner boundary (Aubert 
et al., 2008). The approximately spherical harmonic Y0

2 pattern is 
especially prominent in the time-average map (Fig. 3e). The same time- 

Table 2 
Summary of models. The critical Rayleigh number Rac was obtained using the open-source eigenmode solver Singe (Schaeffer, 2013; Vidal and Schaeffer, 2015), 
available at https://bitbucket.org/nschaeff/singe. In all cases, Pr ¼ 1. The maximum spherical harmonic degree and order is ℓmax and the number of radial grid points 
in the shell is nr. The duration of the simulations is given in units of advection time. Other control and output parameters are defined in the text.  

Case ri/ro E Ra Ra/Rac ℓmax nr Roc Roloc Ra/RaT Re Ro Duration 

1 0.7 1 ⋅ 10� 3 2 ⋅ 105 6.28 64 49 0.45 4.2 0.63 40 0.040 73 
2 0.8 1 ⋅ 10� 3 2 ⋅ 105 7.80 64 49 0.45 4.2 0.63 48 0.048 45 
3 0.8 1 ⋅ 10� 3 1 ⋅ 106 38.99 64 49 1 31.6 3.2 170 0.170 58 
4 0.8 1 ⋅ 10� 3 3 ⋅ 106 116.96 64 49 1.7 124.9 9.5 335 0.335 52 
5 0.8 3 ⋅ 10� 4 1 ⋅ 106 9.79 64 49 0.30 2.8 0.52 104 0.031 37 
6 0.8 3 ⋅ 10� 4 1 ⋅ 107 97.85 64 49 0.95 50.6 5.2 523 0.157 36 
7 0.8 3 ⋅ 10� 4 5 ⋅ 107 489.26 64 49 2.1 378.4 26.0 1273 0.382 35 
8 0.8 1 ⋅ 10� 4 1 ⋅ 107 26.09 96 49 0.32 5.6 1 375 0.038 110 
9 0.8 1 ⋅ 10� 4 2 ⋅ 107 52.18 96 49 0.45 13.4 2 638 0.064 94 
10 0.8 1 ⋅ 10� 4 5 ⋅ 107 130.46 96 49 0.71 42.0 5 1140 0.114 98 
11 0.8 5 ⋅ 10� 5 1 ⋅ 107 11.13 96 61 0.16 1.4 0.35 376 0.019 57  

Fig. 2. Images from a snapshot of case 1. (a) Zonally-averaged temperature; (b) Radial vorticity just below the outer boundary layer; (c) Streamlines of the zonally- 
averaged meridional flow; (d) Heat flux across the outer boundary; And (e) heat flux across the inner boundary. In (a) red/blue denotes hot/cold respectively. In (b) 
red/blue denotes positive/negative radial vorticity, i.e. anti-clockwise/clockwise circulation, respectively. In (c) red/blue contours denote anti-clockwise/clockwise 
circulation, respectively. In (d) and (e) red/blue denote positive/negative heat flux anomaly (i.e. heat flux with respect to the mean), respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. As in Fig. 2 for a long-term time-average of case 1, an example of equatorial cooling.  

Fig. 4. Images from a snapshot of case 10. (a) Radial vorticity just below the outer boundary layer; (b) Zonally-averaged meridional flow. Red/blue denotes anti- 
clockwise/clockwise circulation, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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average Y0
2 pattern was also found in numerical dynamo simulations 

with Earth-like core geometry and a somewhat different convection style 
(Amit and Choblet, 2009; Aubert et al., 2008). From hereafter, we focus 
on the time-average heat flux on both boundaries. 

Rotational effects can be observed for a thinner shell as well. In all 
other cases the inner/outer radii ratio is increased to 0.8. In this ge-
ometry, the tangent cylinder intercepts the outer boundary at lower 
latitudes, 37� in these cases. In addition, for the same control parame-
ters, convection is slightly stronger when confined to a thinner shell, 
resulting in a higher Reynolds number (compare cases 1 and 2 in 
Table 2) and thinner axial columns of instantaneous flow (not shown). 

When convection is significantly stronger, the role of inertia in the 
dynamics may become more important. In cases 9–10, the Rayleigh 
number is more than a hundred times larger than in case 1. This results 
in a much larger Re and a larger Ro values (see Table 2) that characterize 
a more turbulent flow. The instantaneous axial convective rolls seen in 
case 1 (Figs. 2b and c) are broken and convective plumes fill the entire 
shell including inside the tangent cylinder (Fig. 4). The time-average 
outer boundary heat flux anomalies also exhibit a Y0

2 pattern as in 
case 1, but perhaps surprisingly with an opposite sign (Fig. 5a), which 
we term “polar cooling”. 

An intermediate cooling scenario is found in case 8. The outer 
boundary heat flux anomaly is largest at the equator but also peaks at 
high latitudes with minima at mid latitudes, resembling spherical har-
monic Y0

4 rather than Y0
2 (Fig. 6a). We term this more complicated lat-

itudinal dependence “intermediate cooling” (Table 3). 
Figs. 3, 5 and 6 demonstrate that the runs are long enough to remove 

most of the transient longitude-dependent features from the time- 
average patterns. This allows evaluating the results in terms of their 
zonal profiles (Fig. 7). Comparing cases 1 and 2 which have the same 
control parameters except for the shell thickness (Table 2), although the 
convective power depends on both Ra and the shell thickness (e.g. 
Aubert et al., 2009), the tangent cylinder is distinguishable between the 
two zonal outer boundary heat flux patterns. In case 1, a change of trend 
appears at higher latitudes (close to the dashed vertical line denoting the 
tangent cylinder in case 1), whereas in case 2, a change of trend appears 
at lower latitudes (close to the dotted vertical line denoting the tangent 
cylinder in case 2). In these cases, equatorial cooling prevails (Fig. 7 left 
and Table 3). Note the change of trend in the latitudinal dependence of 
the heat flux in both cases, from steep outside to more moderate inside 
the tangent cylinder. The other equatorial cooling cases 5 and 11 
conform to this behavior as well, with the latter exhibiting the strongest 
dichotomy between a peak equatorial to low polar heat flux (Fig. 7 left 
and Table 3). Opposite trends characterize the polar cooling cases, with 
steep variation inside the tangent cylinder and rather flat heat flux 
outside it (Fig. 7 right and Table 3). Overall, the change in trend appears 
at somewhat lower latitudes than that of the tangent cylinder. Finally, 

the intermediate case 8 does not fall into any of the two categories (Fig. 7 
middle and Table 3). 

Table 3 and Figs. 8– 9 summarize the results in terms of the 
parameter dependence of the time-average mean heat flux, time-average 
amplitudes of heat flux heterogeneities and the tangent cylinder effect. 
The mean outer and inner boundary heat fluxes generally increase with 
increasing Roloc (Fig. 8a) as well as when other theoretical forms of the 
Rossby number increase (Fig. 9a). This is expected because increasing 
Ra leads to faster flow, larger inertial effects and consequently larger 
heat flux. Note that polar cooling (triangles) is characterized by larger 
mean heat flux than equatorial cooling (diamonds). Around Roloc ~ 5–10 
(or corresponding critical values of Ro, Roc and Ra/RaT), the pattern 
shifts from equatorial cooling for smaller values to polar cooling for 
larger values. In addition, decreasing inertia results in decreasing heat 
flux spatial variability, i.e. polar cooling is characterized by lower 
(relative) heat flux heterogeneities whereas equatorial cooling is char-
acterized by larger heat flux heterogeneities (Figs. 8b and 9b). This 
result is expected because when Ro is increased the models approach the 
non-rotating regime in which the heat flux is homogeneous. Also note 
that for both polar and equatorial coolings, the amplitude of the outer 
boundary heat flux heterogeneity (black) is slightly larger than that of 
the inner boundary (red). 

The magnitude of the tangent cylinder effect, measured by Eq. (11), 
is shown in Figs. 8c and 9c. For polar cooling, the effect is weakly 
dependent on the control parameters, with a tendency to converge to 
zero as the relative effect of rotation decreases on approach to the non- 
rotating regime. In contrast, for equatorial cooling, the tangent cylinder 
effect is stronger with the magnitude of < qo >

h/l steadily decreasing 
with increasing inertia, reflecting the transition from dominance of axial 
convective rolls outside the tangent cylinder for the lowest Rossby 
numbers to more turbulent conditions in the larger Rossby numbers. The 
largest tangent cylinder effect with polar cooling is registered in case 9 
with < qo >

h/l ¼ 0.16, whereas in case 11 with equatorial cooling < qo 
>h/l ¼ � 0.47 (Table 3). The latter case with the lowest Ekman number 
(Table 2) also exhibits the largest (relative) heterogeneity (Figs. 8– 9). 

In most cases, the inner boundary heat flux shows a similar cooling 
pattern as the outer boundary heat flux, i.e. either polar cooling or 
equatorial cooling prevails in both (Table 3). However, this is not always 
precisely the case (see e.g. Fig. 6). In cases 7 and 10, polar cooling 
prevails on the outer boundary whereas the inner boundary is more 
small scale with a peak at mid latitudes vs. minima at the equator and 
the poles (which we classify as “mid latitudes” in Table 3), while in case 
6 again polar cooling is observed on the outer boundary whereas the 
inner boundary is characterized by polar peak, equatorial low, but in 
addition low-latitude peaks (which we classify as “quasi polar” in 
Table 3). Overall, a nearly z-invariant convection pattern is not expected 
to produce correlated heat flux patterns in the two boundaries, and such 

Fig. 5. Heat fluxes for a long-term time-average of case 9, an example of polar cooling. (a) Across the outer boundary; (b) Across the inner boundary. Red/blue 
denote positive/negative heat flux anomaly (i.e. heat flux with respect to the mean), respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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similarities probably arise due to thermal diffusion effects in the simu-
lated thin shell. In realistic planetary conditions these diffusive effects 
are expected to be smaller (Aubert et al., 2007). Overall, the outer 
boundary heat flux seems to globally display larger scale patterns than 
the inner boundary heat flux. 

4. Dynamical regime for buried oceans 

Here, we introduce possibly relevant parametric regimes. Fig. 10 
presents the regime diagram of Gastine et al. (2016) (dashed grey 
curves) for convecting rotating flows in a spherical shell. The regime 
diagram is given in terms of the Ekman and Rayleigh numbers. At the 
onset of supercritical convection, the flow is weakly non-linear. When 

the Rayleigh number exceeds six times the critical value for convection, 
three flow regimes are possible. For small Rayleigh numbers such that 
Ra < 0.4E� 8/5, the flow resides in a rapidly rotating regime. For strongly 
convecting systems in which Ra > 100E� 12/7, the flow is in a non- 
rotating regime. In between, a transitional regime prevails. For more 
details, see Gastine et al. (2016). 

We consider Titan’s ocean as an emblematic example for our models 
(see Section 5). In order to estimate the appropriate Ekman and Rayleigh 
numbers for Titan’s ocean, we adopt the models by Vance et al. (2018) 
to constrain its geometry. The extreme values for thickness, D ¼ 91 km 
(ocean with 10% MgSO4, densest core) and 420 km (ocean with pure 
water, less dense core), lead respectively to ri/ro ¼ 0.96 and 0.84. 
Assuming a viscosity ν ¼ 1.8 ⋅ 10� 6 m2 s� 1 and a given rotation rate 

Fig. 6. As in Fig. 5 for case 8, with intermediate cooling.  

Table 3 
Time-average cooling patterns and amplitudes. Positive anomaly of equatorial/polar outer boundary heat flux is termed “Equatorial cooling”/“Polar cooling” 
respectively. Other quantities are defined in the text.  

Case < qo > < qi > Outer cooling < qo >
h/l Inner cooling < q�o > < q�i >

1 1.69 3.44 Equatorial � 0.39 Equatorial 0.59 0.46 
2 2.40 3.75 Equatorial � 0.19 Equatorial 0.37 0.32 
3 5.89 9.20 Polar 0.13 Polar 0.22 0.09 
4 8.68 13.55 Polar 0.08 Polar 0.15 0.06 
5 3.52 5.50 Equatorial � 0.23 Equatorial 0.46 0.45 
6 11.02 17.21 Polar 0.11 Quasi-polar 0.21 0.04 
7 18.34 28.60 Polar 0.06 Mid latitudes 0.12 0.07 
8 7.99 12.49 Intermediate 0.02 Equatorial 0.16 0.17 
9 12.17 19.00 Polar 0.16 Polar 0.26 0.07 
10 17.10 26.68 Polar 0.13 Mid latitudes 0.21 0.05 
11 4.33 6.76 Equatorial � 0.47 Equatorial 0.91 0.83  

Fig. 7. Non-dimensional zonally-averaged outer boundary heat flux anomalies for the long-term time-averages of equatorial cooling cases (left), the intermediate 
cooling case 8 (middle) and polar cooling cases (right). The dashed vertical lines (left) denote the latitudes of the tangent cylinder in case 1, the dotted vertical lines 
denote the latitudes of the tangent cylinder in the other cases. Note the different scales. 
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Ω ¼ 4.6 ⋅ 10� 6 s� 1 at present, this range of values for D leads to a rela-
tively robust range for the Ekman number E ¼ 1.9 ⋅ 10� 12–4.8 ⋅ 10� 11. 

Estimates of the Rayleigh number for Titan’s ocean are much less 
well constrained as it further depends on other thermodynamical con-
stants and crucially on the essentially unknown temperature difference 
across the ocean ΔT. This temperature difference can be derived from 
the Nusselt-Rayleigh relation and an estimate of the heat flux at the top 
of the ocean, qo. The Nusselt number is defined as:  

Nu ¼
qoD

ρCpκΔT
: (17)  

The extrapolation of Nu–Ra relation to very high Rayleigh numbers is, 
however, debatable (e.g. Gastine et al., 2015; Roche et al., 2010). To 
obtain the Nusselt and Rayleigh numbers relevant for Titan’s ocean, we 
first use two estimates of Nu–Ra relation proposed earlier for the non- 
rotating regime: Nu ¼ 0.07 ⋅ Ra1/3 and Nu ∝ Ra0.389, derived from nu-
merical simulations (Gastine et al., 2015, cyan dashed lines in Fig. 10) 
and laboratory experiments (Roche et al., 2010, blue dashed lines in 
Fig. 10) respectively. In particular, Roche et al. (2010) showed that the 
Ra exponent increases for Ra > 7 ⋅ 1011, a regime that cannot be reached 
in numerical simulations, from 0.33 to 0.389. For the second power law 
we obtain a prefactor 0.0171 by assuming that the two laws predicted 
the same Nusselt number for a Rayleigh number equal to 1011, i.e. 
Nu ¼ 0.0171 ⋅ Ra0.389. We also consider the scaling relation corre-
sponding to rapidly-rotating convection (Gastine et al., 2016): 
Nu ¼ 0.15Ra3/2E2 (green dashed lines in Fig. 10). 

Thermal evolution models predict that the power coming out of the 
rocky core of Titan at present is between 450 and 600 GW (Tobie et al., 
2006). This corresponds to an average heat flux of about qo ¼ 6 and 
8 mW/m2 at the top of the ocean interface, assuming an ice shell 
thickness of 75–100 km. These two values lead to the pairs of parallel 
dashed colored lines in Fig. 10. For Titan’s ocean, we assume the 
following parameters: gravity g0 ¼ 1.35 m/s2, thermal diffusivity κ ¼ 1.3 
⋅ 10� 7 m2/s and thermal expansivity α ¼ 3.2 ⋅ 10� 4 K� 1 (cf. Choukroun 
et al., 2010). Using these values and assuming qo ¼ 6–8 mW/m2 and 
ocean thickness ranging between 90 and 450 km, the temperature dif-
ference across the ocean is between 4 ⋅ 10� 4 and 1.4 ⋅ 10� 3 K corre-
sponding to Rayleigh numbers ranging between 3 ⋅ 1019 (for D ¼ 90 km 
and qo ¼ 6 mW/m2 in the rapidly rotating case) and 1.3 ⋅ 1023 (for 
D ¼ 450 km and qo ¼ 8 mW/m2 in the non-rotating case) (see Fig. 10). 

Based on the above estimates Titan’s ocean most likely falls in either 
the non-rotating or the transitional regimes. Of these two, the non- 
rotating regime has been studied extensively (for a summary see Gas-
tine et al., 2016). Furthermore, as will be shown below (Section 5), 
observations suggest a significant latitudinal dependence of heat flux at 
the top of Titan’s ocean with a fair degree of equatorial symmetry (as 
proposed by Soderlund et al., 2014, for Europa), a feature that the 
asymptotic non-rotating regime shall not produce. We thus focused our 
analysis (Section 2) on the less studied transitional regime, which is 
more promising in terms of latitudinal equatorially symmetric 
dynamics. 

We obtained two main types of solutions (Section 3), characterized 

(a) (b) (c)

Fig. 8. (a) Time-average non-dimensional mean outer boundary heat flux < qo > (black) and inner boundary heat flux < qi > (red), (b) amplitudes of the time- 
average outer boundary heat flux heterogeneity < q�o > (black) and inner boundary heat flux heterogeneity < q�i > (red), and (c) normalized difference between 
inside to outside tangent cylinder outer boundary heat flux, all as functions of the local convective Rossby number Roloc (Eq. (15)) in semi-log scale. Equatorial 
cooling is denoted by diamonds, polar cooling by triangles and intermediate cooling (case 8) by Xs. Note that the classification of symbols is based on the outer 
boundary heat flux patterns. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

(a) (b) (c)

Fig. 9. As in Fig. 8 but as functions of Ra/RaT (Eq. (16)).  
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by either larger outer boundary heat flux at low latitudes (which we 
term equatorial cooling and denote by red diamonds in Fig. 10) or by 
larger outer boundary heat flux at high latitudes (which we term polar 
cooling and denote by red triangles in Fig. 10). An intermediate cooling 
case with a more complicated flow pattern is denoted by red X in Fig. 10. 
As can be seen in Fig. 10, all our models fall within the transitional 
regime of Gastine et al. (2016). Constant values of the various Rossby 
numbers (see Section 2) which correspond to our intermediate case 
separate the equatorial and polar cooling models (see dotted red lines in 
Fig. 10). 

The aspect ratio in our simulations (mostly 0.8) corresponds to a 
slightly thicker shell than the upper estimate of Vance et al. (2018). Note 
that they proposed internal structures that are not fully satisfactory in 
the case of Titan, since the compositional models for the rock component 
do not match the density of the interior model (Vance et al., 2018). More 
importantly, while our models and those of Gastine et al. (2016) are 
essentially similar (simulations of rotating convection of Boussinesq 
fluids), possible shifts of regime boundaries are expected between Ti-
tan’s ocean dynamics and the simulations of Gastine et al. (2016). In the 
latter, gravity varies as r� 2 and the ratio ri/ro is set to 0.6, whereas in our 
simulations gravity varies as r and the shell is thinner, both of which 
being probably more relevant choices for Titan’s ocean. However, 
Mound and Davies (2017) found similar regime boundaries as Gastine 
et al. (2016) despite using different gravity profile, aspect ratio and 
boundary conditions. Whether this similarity holds for the non- 
accessible planetary parameters remains an open question. 

5. Implications for the dynamics and structure of Titan’s 
hydropshere 

Here, we compare the cooling regimes in our dynamical models to 
the heat flux anomalies at the top of Titan’s ocean inferred from the 
analysis of topography and gravity data collected by the Cassini space-
craft (Kvorka et al., 2018). In Kvorka et al. (2018), Titan’s topography 
(Lorenz et al., 2013) and gravity field (Iess et al., 2012) are interpreted 
with a viscoelastic flow model taking into account deflection of the ice/ 
ocean interface and heat transport by thermal conduction through the 
ice shell including both heterogenous heat source due to tidal heating 
inside the ice shell and heat flux anomalies from the ocean. Two models 
of topography-dependent erosion and deposition are considered: one 
where erosion is neglected (NE, no erosion) and another where it is 
accounted for in a simple manner (E). The average heat flux values 
derived with such an approach depend on several rheological parame-
ters for the ice among which the grain size, assumed uniform, and a cut- 
off maximum value. For simplicity, we adopt here the reference values 
favored by Kvorka et al. (2018) that were used in their Figs. 9 and 11. 

Non-zonal effects might contribute to the global heat flux due to a 
heterogenous heat flux at the seafloor interface with a high-pressure ice 
mantle governing the specific dynamics of such a layer (Choblet et al., 
2017b; Kalousov�a et al., 2018). Indeed, in the two models proposed by 
Kvorka et al. (2018), the non-zonal contributions are larger than the 
zonal contributions, by factors 1.9 (E) and 3.3 (NE). Here, we focus on 
the zonal part of the models of Kvorka et al. (2018) which may represent 
the internal dynamics in Titan’s ocean. 

Equatorial symmetry seems to dominate the zonal part of the heat 
flux models of Kvorka et al. (2018), with largest heat flux in the polar 
regions of both hemispheres (Fig. 11). To quantify this effect, we 
decomposed the zonal heat flux qo(θ) to equatorially symmetric and 
anti-symmetric parts by  

qs
oðθÞ ¼

qoðθÞ þ qoðπ � θÞ
2

(18)  

and  

qa
oðθÞ ¼ qoðθÞ � qs

oðθÞ (19)  

where the superscripts s and a denote symmetric and anti-symmetric 

Fig. 10. Parameter space for convecting rotating flows in a spherical shell with 
the example of Titan. E is the Ekman number (Eq. (5)) and Ra is the Rayleigh 
number (Eq. (7)). RaE4/3 is a measure of supercriticality of the Rayleigh number 
(Jones et al., 2000). The regime diagram obtained by Gastine et al. (2016) is 
reproduced by dashed grey lines. The parameter range corresponding to Titan’s 
ocean is denoted by dashed colored lines. The estimated range for the Ekman 
number corresponds to endmember values for the ocean thickness D (Vance 
et al., 2018). Values for the Rayleigh number are based on three estimates of the 
temperature scale ΔT following the scaling for the non-rotating regime by 
Roche et al. (2010) (blue) and Gastine et al. (2015) (cyan) and the scaling for 
the rapidly rotating regime by Gastine et al. (2016) (green). For each of the 
three scaling laws, two lines correspond to the low and high heat flux values. 
The models presented in this study are denoted by red diamonds (equatorial 
cooling), red triangles (polar cooling) and red X (intermediate cooling). The two 
dotted red lines separating the equatorial and polar cooling regimes are given 
by constant values of the local convective Rossby number and Ra/RaT of in-
termediate case 8 respectively (see Table 2). For more details see text. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 11. Zonally-averaged heat flux in W/m2 at the base of Titan’s ice shell 
(Kvorka et al., 2018, see their Figs. 9 and 11) for models with (black) and 
without (red) erosion. Also indicated are plausible ranges for the latitude of the 
tangent cylinder at the base of the ice shell: vertical dashed lines based on 
Lef�evre et al. (2014) and vertical dotted lines based on Vance et al. (2018). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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parts respectively, and θ is in the northern hemisphere. Rms ratios of the 
equatorially anti-symmetric part to the equatorially symmetric part jjqa

oj

j=jjqs
ojj (where ||x|| denotes the rms of x) for the two models yield values 

of 0.19 (E) and 0.37 (NE). We interpret these high levels of equatorial 
symmetry as a significant evidence that the rotating convecting dy-
namics highlighted in our simulations might play a key role in Titan’s 
ocean. 

The values of spatial heterogeneity for Titan’s ocean are < q�o >¼
0:21 for the model without erosion (NE) and 0.30 for the model 
including erosion (E) (Kvorka et al., 2018). In our models, the values of 
spatial heterogeneity are < q�o >2 ½0:12 � 0:91� (Table 2), i.e. the infer-
red values for the spatial heterogeneity of Titan’s ocean heat flux are 
well within the corresponding range in our simulations. Furthermore, if 
only values relevant for cases with polar cooling are considered among 
our simulations, the range narrows down to [0.12,0.26], in very good 
agreement with the values inferred for Titan in the models by Kvorka 
et al. (2018). 

The latitudinal dependence of the heat flux at the top of the ocean 
indeed reveals a pronounced distribution of larger heat flux towards 
high latitudes (Fig. 11), i.e. polar cooling, for both the (E) and (NE) 
models. Following the scaling argument derived above (Figs. 8– 9 and 
Table 3), we anticipate that this noticeable feature could imply either a 
value of the local Rossby number Roloc larger than ~ 10 or alternatively 
a value of Ra/RaT larger than ~ 1, both applied for Titan’s ocean. Given 
the relatively well constrained estimates for the Ekman number (cf. 
Section 4, E ’ 1.9 ⋅ 10� 12–4.8 ⋅ 10� 11), the definition of Roloc (15) im-
plies that the appropriate value for the Rayleigh number is larger than 
2.0 ⋅ 1017–3.6 ⋅ 1019. In contrast, for the same E range the definition of 
Ra/RaT (Eq. (16)) implies a somewhat lower range of values for the 
minimal Rayleigh number of 3.0 ⋅ 1016 � 3.8 ⋅ 1018. These lower bounds 
are in agreement with the range derived above of Ra ’ 1019–1025 

(Section 4), but hardly puts a constraint on it. A potentially stronger 
insight into the Rayleigh number is derived considering that the polar 
cooling pattern indicates that Titan’s ocean lies in the transitional 
regime depicted by Gastine et al. (2016) (Fig. 10), and not in the non- 
rotating regime since the latter should not involve latitudinal depen-
dence of the heat flux. If the boundary between the two (Ra < 100E� 12/ 

7) is directly applied to the case of Titan’s ocean, its Rayleigh number is 
smaller than 4.9 ⋅ 1019-1.2 ⋅ 1022, depending on the value for the Ekman 
number. 

Finally, while the latitude at which the tangent cylinder intersects 
the outer boundary of Titan’s ocean cannot be constrained from Fig. 11 
without ambiguity, we also note that considering the ocean thickness 
ranges proposed in the literature (e.g. Lef�evre et al., 2014, Vance et al., 
2018) allows to compute the ratio < qo >

h/l introduced in Eq. (11). For 
the thinnest shell considered by Vance et al. (2018) of ri/ro ¼ 0.96, the 
latitude of the tangent cylinder is 16�, and the corresponding values for 
< qo >

h/l are 0.052 (E) and 0.016 (NE). For the thickest shell of ri/ 
ro ¼ 0.83, the latitude of the tangent cylinder is 34�, and the corre-
sponding values for < qo >

h/l are 0.073 (E) and 0.025 (NE). All these are 
positive ratios, indicating polar cooling as expected. While the values for 
the model without erosion (NE) are slightly smaller than the range 
observed in our simulations with polar cooling ([0.06,0.16]), the values 
for the model with erosion (E) correspond to the lower end of this range. 
Together with its twice more pronounced equatorial symmetry, this may 
indicate that the model with erosion (E) is a better candidate for Titan’s 
ice shell/ocean interaction. Note that the change of trend of the zonal 
heat flux based on the models of Kvorka et al. (2018) occurs at higher 
latitudes than the tangent cylinder (Fig. 11), in contrast to our self- 
consistent models in which the change of trend in the zonal heat flux 
appears at somewhat lower latitudes than the tangent cylinder (Fig. 7). 

6. Discussion 

In Earth’s liquid outer core, which is a thick shell with an aspect ratio 

of 0.35, E ≪ 1 and Ro ≪ 1 (e.g. Olson, 2007), hence rapid rotation effects 
are thought to prevail. Outside the tangent cylinder, where the rotation 
and gravity vectors are nearly perpendicular, according to the Taylor- 
Proudman theorem the flow is expected to be invariant in the direc-
tion parallel to the rotation axis. This gives axial columns of fluid (e.g. 
Busse, 1970, Jault, 2008). Inside the tangent cylinder, where the rota-
tion and gravity vectors are nearly parallel, the thermo-chemical wind 
balance gives spiraling flow with polar upwelling structures which are 
evident by observed dispersed magnetic flux (Olson and Aurnou, 1999) 
though in a somewhat non-trivial way (Cao et al., 2018). Competing 
rotation and convection effects determine the fluid dynamics in the 
shell. Close to the onset of convection when rotation effects dominate, 
columnar convection outside the tangent cylinder is more vigorous than 
thermal wind driven upwelling inside the tangent cylinder, resulting in 
equatorial cooling. Conversely, when convection effects dominate, these 
axial convective rolls are broken, convective plumes fill the tangent 
cylinder and the thermal wind driven polar upwelling results in polar 
cooling (Tilgner and Busse, 1997; Busse and Simitev, 2015). This effect 
is particularly significant with thin shells in which the tangent cylinder 
occupies a much larger surficial fraction of the outer boundary. 

This rationale was recently explored in the context of thin shells 
which are applicable for the buried oceans of icy moons. Miquel et al. 
(2018) simulated the dynamics in a thin, rapidly rotating shell using 3D 
numerical models as well as a non-hydrostatic equatorial β-plane con-
vection model. In both cases, they found that in the limit of rapid 
rotation (i.e. E ≪ 1) convection is trapped at low latitudes and the peak 
heat flux appears at the equator (i.e. equatorial cooling). The latitudinal 
extent of the large equatorial heat flux is determined by ϵ/E where 
ϵ2 ¼D/ro (Miquel et al., 2018). 

Our results show that the competition between rotation and con-
vection is well captured by the Rossby number, as was previously pro-
posed (Soderlund et al., 2014). We find that equatorial cooling prevails 
when the models are closer to the rapidly rotating regime, whereas polar 
cooling emerges when the models are closer to the non-rotating regime, 
in both cases within the transitional regime (Fig. 10) of Gastine et al. 
(2016). This parameter dependence of the latitudinal heat flux distri-
bution is in agreement with previous studies (Tilgner and Busse, 1997; 
Busse and Simitev, 2015). For example, Busse and Simitev (2006) found 
in numerical dynamos with Earth-like geometry that increased rotation 
(i.e. lower E) gives more enhanced equatorial cooling. Likewise, Yadav 
et al. (2016) found in both rotating convection simulations and nu-
merical dynamos that increased convection vigor (i.e. larger Ra) gives 
more enhanced polar cooling. Miquel et al. (2018) found in asymptoti-
cally thin shell, rapidly rotating models equatorially trapped convection 
that gives peak equatorial cooling. Guervilly and Cardin (2017) studied 
zonal flows and heat transport in a quasi-geostrophic model which al-
lows accessing very low Ekman numbers. They found that the equatorial 
cooling pattern is further enhanced by the rapidly rotating quasi- 
geostrophic flows because the convective transport is perpendicular to 
the rotation axis. In contrast, early models with moderate rotation and 
convection vigor found mixed polar and equatorial cooling (Gilman, 
1975, 1977), while Aurnou et al. (2008) found polar cooling in a rapidly 
rotating, strongly convecting simulation. 

The key to reconcile these results may be the role of zonal flows. 
According to the Taylor-Proudman theorem, axial convective columns 
emerge in rapidly rotating fluids. These cylindrical flow structures are 
highly efficient in transporting heat in the equatorial region, hence the 
resulting equatorial cooling on approach to the rapidly rotating regime 
(e.g. Busse and Simitev, 2006, Guervilly and Cardin, 2017, Miquel et al., 
2018, Yadav et al., 2016). However, increased rotation may give rise to 
stronger zonal flows that tend to diminish the equatorial heat flux, 
which may lead to polar cooling (Aurnou et al., 2008). Such strong zonal 
flows are especially prominent under free-slip boundary conditions 
(Aurnou et al., 2008; Yadav et al., 2016) but may also emerge with no- 
slip boundary conditions. The zonal flow exhibits non-monotonic 
dependence on the Rossby number (Yadav et al., 2016) which may 
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then explain these two contradicting parameter dependences of the 
outer boundary heat flux pattern. Additional complications may arise 
due to dependences on e.g. the shell thickness and the Prandtl number. 

In the context of Titan’s buried ocean, a new independent constraint 
is brought from the inferred heat flux models of Kvorka et al. (2018). 
These models clearly indicate that polar cooling prevails at the top of 
Titan’s ocean (Fig. 11). Assuming that this is true, we envision two 
possible interpretations. According to our models, Titan’s ocean is at the 
transitional regime close to the non-rotating regime with relatively 
strong convection. In contrast, according to the model of Aurnou et al. 
(2008), convection in Titan’s ocean would be relatively weak and the 
dynamics would then be dominated by rotational effects, but strong 
zonal flows diminish the equatorial heat flux. 

It is worth noting that the regime diagram (Fig. 10) of Gastine et al. 
(2016) was obtained using a fixed shell aspect ratio of 0.6 and fixed ΔT 
boundary conditions. Different thermal boundary conditions (i.e. pre-
scribed heat flux at one or both boundaries) or different shell thicknesses 
would likely require some updating of the scaling laws separating the 
different flow regimes. For example, our cases 1 and 2 have the same 
control parameters (hence overlap in Fig. 10) but different shell thick-
nesses (Table 2). Although both cases give equatorial cooling, the 
amplitude of < qo >

h/l in case 2 with the thinner shell is twice smaller 
(Table 3), suggesting that (for given control parameters) a thinner shell 
favors polar cooling. In that respect, replacing Ra by the convective 
power, which accounts for both the thermal boundary conditions and 
the shell geometry (Aubert et al., 2009), could be more appropriate. 
Other phenomena (e.g. compositional effects) might also induce biases. 
Nevertheless, qualitatively the diagram in Fig. 10 may provide a useful 
guidance for comparing numerical models and natural bodies. 

Our choice of isothermal and impermeable boundary conditions is 
not necessarily the most physically relevant. The outer boundary of the 
ocean corresponds to a phase change. So does the inner boundary in the 
case where high-pressure polymorphs of ice form a layer beneath. In a 
situation where isothermal conditions are applied to mimic the melting- 
freezing boundary, the choice of a non-penetrative velocity condition is 
questionable. Alternatively, slowly evolving convection in the sur-
rounding solid ice layers may affect the latitudinal variations in heat flux 
at the top of the ocean. Dynamics in the high-pressure ice mantle below 
the ocean may give heterogenous heat flux at the seafloor (Choblet et al., 
2017b; Kalousov�a et al., 2018), whereas solid-state convection in the ice 
shell above can induce significant temperature anomalies, even more so 
if latitudinal variation in surface insolation induces planetary scale 
convective features with polar downwelling and equatorial upwelling 
(Weller et al., in press). If the surrounding ice shells can indeed support 
slowly varying large lateral temperature variations, then the more 
appropriate thermal boundary conditions for the ocean could be pre-
scribed heterogeneous flux. 

While our main planetary target here is Titan, other ocean worlds 
would likely correspond to other regions in the regime diagram. 
Considering an average value for the ocean thickness of 40 km, Ence-
ladus displays an Ekman number and geometry comparable to Titan’s: E 
’ 2.2 ⋅ 10� 11 and ri/ro ¼ 0.83. A plausible range for Enceladus’ ocean 
Rayleigh number involves however significantly lower values than Ti-
tan’s: Ra ’ 5 ⋅ 1017 � 1021. This would in theory imply that the appro-
priate range for Enceladus’ ocean lies exclusively in the transitional 
regime with equatorial cooling as a possibility. However, because 
Enceladus’ ice shell is more than three times thicker near the equator 
than near the poles (Beuthe et al., 2016; �Cadek et al., 2016; Le Gall et al., 
2017) and internal heating in the ice shell is negligible (�Cadek et al., 
2019), equatorial cooling is unlikely for its ocean. Furthermore, the 
actual heat flux pattern at the top of Enceladus’ ocean may be dominated 
by polar cooling due to forcing coming from its core (Choblet et al., 
2017a). Overall, various complexities (non-spherical container, strongly 
heterogeneous bottom heat flux) should be considered for some plane-
tary objects. Given the variety of sizes and orbital characteristics, 
distinct dynamical regimes are expected for subsurface oceans of icy 

moons. 
As acknowledged by Kvorka et al. (2018), inaccurate topography and 

gravity measurements render their derived heat flux models uncertain. 
It is therefore probably premature to draw definite conclusions from the 
comparison exercise between Titan’s heat flux inferred from observa-
tions and our simulated heat flux at the top of the shell. Nevertheless, we 
consider that the overall agreement in terms of pattern and amplitude is 
encouraging for both approaches. This also highlights the importance of 
future geophysical observations by space missions which may further 
constrain the dynamics of deep oceans. 

Acknowledgments 

This work acknowledges the financial support from R�egion Pays de la 
Loire, project GeoPlaNet (convention N� 2016-10982). We also 
acknowledge support from CNES JUICE and Europa Clipper. We are 
grateful to Krista Soderlund and Thomas Gastine for insightful discus-
sions that enriched this paper. We thank two anonymous reviewers for 
constructive comments that improved the paper. 

References 

Amit, H., Choblet, G., 2009. Mantle-driven geodynamo features — effects of post- 
Perovskite phase transition. Earth. Planet. Space. 61, 1255–1268. 

Amit, H., Choblet, G., Olson, P., Monteux, J., Deschamps, F., Langlais, B., Tobie, G., 
2015. Towards more realistic core-mantle boundary heat flux patterns: a source of 
diversity in planetary dynamos. Prog. Earth Planet. Sci. 2:26 https://doi.org/ 
10.1186/s40645–015-0056-3. 

Aubert, J., Amit, H., Hulot, G., 2007. Detecting thermal boundary control in surface 
flows from numerical dynamos. Phys. Earth Planet. Inter. 160, 143–156. 

Aubert, J., Amit, H., Hulot, G., Olson, P., 2008. Thermo-chemical wind flows couple 
Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761. 

Aubert, J., Gastine, T., Fournier, A., 2017. Spherical convective dynamos in the rapidly 
rotating asymptotic regime. J. Fluid. Mech. 813, 558–593. 

Aubert, J., Labrosse, S., Poitou, C., 2009. Modelling the paleo-evolution of the 
geodynamo. Geophys. J. Int. 179, 1414–1428. 

Aurnou, J., Heimpel, M., Allem, L., King, E., Wicht, J., 2008. Convective heat transfer 
and the pattern of thermal emission on the gas giants. Geophys. J. Int. 173, 793–801. 

Baland, R.-M., Tobie, G., Lef�evre, A., Van Hoolst, T., 2014. Titan’s internal structure 
inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41. 

Baland, R.-M., Van Hoolst, T., Yseboodt, M., Karatekin, O., 2011. Titan’s obliquity as 
evidence of a subsurface ocean? Astronom. Astrophys. 530, A141. 

B�eghin, C., Randriamboarison, O., Hamelin, M., Karkoschka, E., Sotin, C., Whitten, R.C., 
Berthelier, J.-J., Grard, R., Sim oes, F., 2012. Analytic theory of Titan’s Schumann 
resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 
218(2), 1028–1042. 

B�eghin, C., Sotin, C., Hamelin, M., 2010. Titan’s native ocean revealed beneath some 
45 km of ice by a Schumann-like resonance. Comp. Rend. Geosci. 342, 425–433. 

Beuthe, M., Rivoldini, A., Trinh, A., 2016. Enceladus’s and Dione’s floating ice shells 
supported by minimum stress isostasy. Geophys. Res. Lett. 43(19), 10088–10096. 

Busse, F., 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 
441–460. 

Busse, F., Simitev, R., 2006. Parameter dependences of convection-driven dynamos in 
rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 100, 341–361. 

�Cadek, O., Sou�cek, O., B�ehounkov�a, M., Choblet, G., Tobie, G., Hron, J., 2019. Long-term 
stability of Enceladus uneven ice shell. Icarus 319, 476–484. 

�Cadek, O., Tobie, G., Van Hoolst, T., Mass�e, M., Choblet, G., Lef�evre, A., Mitri, G., 
Baland, R.-M., B�ehounkov�a, M., Bourgeois, O., et al., 2016. Enceladus’s internal 
ocean and ice shell constrained from Cassini gravity, shape, and libration data. 
Geophys. Res. Lett. 43, 5653–5660. 

Cao, H., Yadav, R.K., Aurnou, J., 2018. Geomagnetic polar minima do not arise from 
steady meridional circulation. Proc. Nat. Acad. Sci. 115 (44), 11186–11191. 

Choblet, G., Tobie, G., Sotin, C., B�ehounkov�a, M., �Cadek, O., Postberg, F., Sou�cek, O., 
2017. Powering prolonged hydrothermal activity inside Enceladus. Nature Astro. 1 
(12), 841. 

Choblet, G., Tobie, G., Sotin, C., Kalousova, K., Grasset, O., 2017. Heat transport in the 
high-pressure ice mantle of large icy moon. Icarus 285, 252–262. 

Choukroun, M., Grasset, O., Tobie, G., Sotin, C., 2010. Stability of methane clathrate 
hydrates under pressure: influence on outgassing processes of methane on Titan. 
Icarus 205, 581–593. 

Dormy, E., Soward, A.M., Jones, C.A., Jault, D., Cardin, P., 2004. The onset of thermal 
convection in rotating spherical shells. J. Fluid Mech. 501, 43–70. 

Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Phys. Earth 
Planet. Inter. 25, 297–356. 

Gabasova, L.R., Tobie, G., Choblet, G., 2018. Compaction-driven evolution of Pluto’s 
rocky core: implications for water-rock interactions. In: Ocean Worlds, 20185. 

Gastine, T., Wicht, J., Aubert, J., 2016. Scaling regimes in spherical shell rotating 
convection. J. Fluid. Mech. 808, 690–732. 

H. Amit et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0005
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0005
https://doi.org/10.1186/s40645&ndash;015-0056-3
https://doi.org/10.1186/s40645&ndash;015-0056-3
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0015
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0015
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0020
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0020
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0025
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0025
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0030
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0030
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0035
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0035
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0040
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0040
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0045
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0045
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0050
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0050
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0050
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0050
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0055
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0055
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0060
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0060
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0065
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0065
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0070
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0070
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0075
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0075
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0080
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0080
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0080
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0080
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0085
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0085
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0090
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0090
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0090
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0095
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0095
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0100
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0100
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0100
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0105
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0105
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0110
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0110
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0115
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0115
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0120
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0120


Icarus 338 (2020) 113509

12

Gastine, T., Wicht, J., Aurnou, J., 2015. Turbulent Rayleigh-b�eNard convection in 
spherical shells. J. Fluid Mech. 778, 721–764. 

Gilman, P., 1975. Linear simulations of Boussinesq convection in a deep rotating 
spherical shell. J. Atmos. Sci. 32, 1331–1352. 

Gilman, P., 1977. Nonlinear dynamics of Boussinesq convection in a deep rotating shellI. 
Geophys. Astrophys. Fluid Dyn. 8, 93–135. 

Glatzmaier, G., 2002. Geodynamo simulations: how realistic are they? Annu. Rev. Earth 
Planet. Sci. Lett. 30, 237–257. 

Goodman, J.C., Collins, G.C., Marshall, J., Pierrehumbert, R.T., 2004. Hydrothermal 
plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109 
(E3). 

Grasset, O., Dougherty, M., Coustenis, A., Bunce, E., Erd, C., Titov, D., Blanc, M., 
Coates, A., Drossart, P., Fletcher, L., et al., 2013. Jupiter icy moons explorer (JUICE): 
an ESA mission to orbit Ganymede and to characterise the Jupiter system. Plan. 
Space Sci. 78, 1–21. 

Guervilly, C., Cardin, P., 2017. Multiple zonal jets and convective heat transport barriers 
in a quasi-geostrophic model of planetary cores. Geophys. J. Int. 211, 455–471. 

Hauck, S.A., Mazarico, E., Padovan, S., Peale, S.J., 2018. Mercury’s internal structure. In: 
Solomon, S.C., Anderson, B.J., Nittler, L.R. (Eds.), Mercury — The View after 
MESSENGER. . 

Heimpel, M., Evans, M., 2013. Testing the geomagnetic dipole and reversing dynamo 
models over Earth’s cooling history. Phys. Earth Planet. Inter. 224, 124–131. 

Hemingway, D., Iess, L., Tajeddine, R., Tobie, G., 2018. The interior of Enceladus. In: 
Schenk, P.M.e.a. (Ed.), Enceladus and the Icy Moons of Saturn. Univ. of Arizona, 
Tucson. 

Hsu, H.-W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horanyi, M., Juh�asz, A., 
Altobelli, N., Suzuki, K., Masaki, Y., Kuwatani, T., Tachibana, S., Sirono, S.-I., 
Moragas-Klostermeyer, G., Srama, R., 2015. Ongoing hydrothermal activities within 
Enceladus. Nature 519, 207–210. 

Hsu, H.-W., Schmidt, J., Kempf, S., Postberg, F., Moragas-Klostermeyer, G., Seiß, M., 
Hoffmann, H., Burton, M., Ye, S., Kurth, W.S., Hor�anyi, M., Khawaja, N., Spahn, F. e. 
a., 2018. In situ collection of dust grains falling from Saturn’s rings into its 
atmosphere. Science 362. https://doi.org/10.1126/science.aat3185. 

Iess, L., Jacobson, R., Ducci, M., Stevenson, D., Lunine, J.I., Armstrong, J.W., Asmar, S., 
Racioppa, P., Rappaport, N.J., Tortora, P., 2012. The tides of Titan. Science 337, 
457–459. 

Iess, L., Rappaport, N.J., Jacobson, R.A., Racioppa, P., Stevenson, D.J., Tortora, P., 
Armstrong, J.W., Asmar, S.W., 2010. Gravity field, shape, and moment of inertia of 
Titan. Science 327, 1367–1369. 

Jault, D., 2008. Axial invariance of rapidly varying diffusionless motions in the Earth’s 
core interior. Geophys. J. Int. 166, 67–76. 

Jones, C., Soward, A., Mussa, A., 2000. The onset of thermal convection in a rapidly 
rotating sphere. J. Fluid Mech. 405, 157–179. 

Kalousov�a, K., Sotin, C., Choblet, G., Tobie, G., Grasset, O., 2018. Two-phase convection 
in Ganymede’s high-pressure ice layer-implications for its geological evolution. 
Icarus 299, 133–147. 

Khurana, K.K., Kivelson, M.G., Russell, C.T., 2002. Searching for liquid water in Europa 
by using surface observatories. Astrobiology 2(1), 93–103. 

Kirk, R., Stevenson, D., 1987. Thermal evolution of a differentiated Ganymede and 
implications for surface features. Icarus 69(1), 91–134. 

Kivelson, M., Khurana, K., 2002. The permanent and inductive magnetic moments of 
Ganymede. Icarus 157 (2), 507–522. 

Kvorka, J., �Cadek, O., Tobie, G., Choblet, G., 2018. Does Titan’s long-wavelength 
topography contain information about subsurface ocean dynamics? Icarus 310, 
149–164. 

Le Gall, A., Leyrat, C., Janssen, M.A., Choblet, G., Tobie, G., Bourgeois, O., Lucas, A., 
Sotin, C., Howett, C., Kirk, R., et al., 2017. Thermally anomalous features in the 
subsurface of Enceladus’s south polar terrain. Nature Astro. 1 (4), 0063. 

Lef�evre, A., Tobie, G., Choblet, G., �Cadek, O., 2014. Structure and dynamics of Titan’s 
outer icy shell constrained from Cassini data. Icarus 237, 16–28. 

Ligier, N., Poulet, F., Carter, J., Brunetto, R., Gourgeot, F., 2016. Vlt/Sinfoni observations 
of Europa: new insights into the surface composition. Astronom. J. 151:163. 

Lorenz, R.D., Stiles, B.W., Aharonson, O., Lucas, A., Hayes, A.G., Kirk, R.L., Zebker, H.A., 
Turtle, E.P., Neish, C.D., Stofan, E.R., et al., 2013. A global topographic map of Titan. 
Icarus 225 (1), 367–377. 

McCord, T.B., Teeter, G., Hansen, G.B., Sieger, M.T., Orlando, T.M., 2002. Brines exposed 
to Europa surface conditions. J. Geophys. Res. 107 (E1), 5004. 

Miquel, B., Xie, J.-H., Featherstone, N., Julien, K., Knobloch, E., 2018. Equatorially 
trapped convection in a rapidly rotating shallow shell. Phys. Rev. Fluids 3, 053–801. 

Mitri, G., Meriggiola, R., Hayes, A., Lef�evre, A., Tobie, G., Genova, A., Lunine, J.I., 
Zebker, H., 2014. Shape, topography, gravity anomalies and tidal deformation of 
Titan. Icarus 236, 169–177. 

Nimmo, F., Pappalardo, R., 2016. Ocean worlds in the outer solar system. J. Geophys. 
Res. 121(8), 1378–1399. 

Ojakangas, G.W., Stevenson, D.J., 1989. Thermal state of an ice shell on Europa. Icarus 
81(2), 220–241. 

Olson, P., 2007. Overview. In: Olson, P. (Ed.), Treatise on Geophysics, 8. Elsevier Science. 
Olson, P., Aurnou, J., 1999. A polar vortex in the Earth’s core. Nature 402, 170–173. 
Olson, P., Christensen, U., 2002. The time averaged magnetic field in numerical dynamos 

with nonuniform boundary heat flow. Geophys. J. Int. 151, 809–823. 
Phillips, C.B., Pappalardo, R.T., 2014. Europa Clipper mission concept: exploring 

Jupiter’s ocean moon. Eos Trans. AGU 95(20), 165–167. 
Postberg, F., Kempf, S., Schmidt, J., Brilliantov, N., Beinsen, A., Abel, B., Buck, U., 

Srama, R., 2009. Sodium salts in E-ring ice grains from an ocean below the surface of 
Enceladus. Nature 459 (7250), 1098. 

Postberg, F., Schmidt, J., Kempf, S., Hillier, S., Srama, R., 2011. A salt-water reservoir as 
the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622. 

Roche, P.-E., Gauthier, F., Kaiser, R., Salort, J., 2010. On the triggering of the ultimate 
regime of convection. New J. Phys. 12, 085014. 

Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D.F., Feldman, P.D., Christensen, U.R., 
Retherford, K.D., McGrath, M.A., Musacchio, F., et al., 2015. The search for a 
subsurface ocean in Ganymede with Hubble space telescope observations of its 
auroral ovals. J. Geophys. Res. 120 (3), 1715–1737. 

Schaeffer, N., 2013. Efficient spherical harmonic transforms aimed at pseudo-spectral 
numerical simulations. Geochem. Geophys. Geosyst. 14, 751–758. 

Schaeffer, N., Jault, D., Nataf, H.-C., Fournier, A., 2017. Turbulent geodynamo 
simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29. 

Soderlund, K.M., Schmidt, B.E., Wicht, J., Blankenship, D.D., 2014. Ocean-driven heating 
of Europa’s icy shell at low latitudes. Nature Geosci. 7, 16–19. 

Tajeddine, R., Rambaux, N., Lainey, V., Charnoz, S., Richard, A., Rivoldini, A., 
Noyelles, B., 2014. Constraints on Mimas’ interior from Cassini ISS libration 
measurements. Science 346(6207), 322–324. 

Taylor, G., 1917. Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. 
Lond. A. 93, 92–113. 

Thomas, P., Tajeddine, R., Tiscareno, M., Burns, J., Joseph, J., Loredo, T., Helfenstein, P., 
Porco, C., 2016. Enceladus’ measured physical libration requires a global subsurface 
ocean. Icarus 264, 37–47. 

Thomson, R.E., Delaney, J.R., 2001. Evidence for a weakly stratified European ocean 
sustained by seafloor heat flux. J. Geophys. Res. 106(E6), 12355–12365. 

Tilgner, A., Busse, F.H., 1997. Finite-amplitude convection in rotating spherical fluid 
shells. J. Fluid Mech. 332, 359–376. 

Tobie, G., Lunine, J.I., Sotin, C., 2006. Episodic outgassing as the origin of atmospheric 
methane on Titan. Nature 440, 61–64. 

Vance, S., Brown, J., 2005. Layering and double-diffusion style convection in Europa’s 
ocean. Icarus 177(2), 506–514. 

Vance, S., Goodman, J., 2009. Oceanography of an ice-covered moon. Europa 459–484. 
Vance, S.D., Panning, M.P., St€ahler, S., Cammarano, F., Bills, B.G., Tobie, G., Kamata, S., 

Kedar, S., Sotin, C., Pike, W.T., et al., 2018. Geophysical investigations of 
habitability in ice-covered ocean worlds. J. Geophys. Res. 123 (1), 180–205. 

Vidal, J., Schaeffer, N., 2015. Quasi-geostrophic modes in the Earth’s fluid core with an 
outer stably stratified layer. Geophys. J. Int. 202, 2182–2193. 

Weller, M.B., Fuchs, L., Becker, T.W., Soderlund, K.M., 2019. Convection in thin shells of 
icy satellites: effects of latitudinal surface temperature variations. J. Geophys. Res. 
124, 2029–2053. 

Wicht, J., 2002. Inner-core conductivity in numerical dynamo simulations. Phys. Earth 
Planet. Inter. 132, 281–302. 

Yadav, R., Gastine, T., Christensen, U., Duarte, L., Reiners, A., 2016. Effect of shear and 
magnetic field on the heat-transfer efficiency of convection in rotating spherical 
shells. Geophys. J. Int. 204, 1120–1133. 

Zhang, K., Jones, C.A., 1993. The influence of Ekman boundary layers on rotating 
convection. Geophys. Astrophys. Fluid Dyn. 71, 145–162. 

Zimmer, C., Khurana, K.K., Kivelson, M.G., 2000. Subsurface oceans on Europa and 
Callisto: constraints from Galileo magnetometer observations. Icarus 147(2), 
329–347. 

H. Amit et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0125
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0125
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0130
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0130
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0135
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0135
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0140
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0140
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0145
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0145
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0145
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0150
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0150
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0150
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0150
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0155
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0155
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0160
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0160
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0160
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0165
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0165
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0170
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0170
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0170
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0175
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0175
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0175
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0175
https://doi.org/10.1126/science.aat3185
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0185
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0185
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0185
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0190
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0190
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0190
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0195
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0195
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0200
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0200
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0205
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0205
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0205
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0210
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0210
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0215
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0215
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0220
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0220
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0225
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0225
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0225
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0230
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0230
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0230
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0235
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0235
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0240
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0240
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0245
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0245
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0245
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0250
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0250
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0255
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0255
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0260
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0260
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0260
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0265
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0265
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0270
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0270
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0275
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0280
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0285
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0285
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0290
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0290
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0295
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0295
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0295
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0300
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0300
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0305
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0305
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0310
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0310
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0310
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0310
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0315
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0315
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0320
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0320
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0325
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0325
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0330
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0330
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0330
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0335
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0335
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0340
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0340
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0340
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0345
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0345
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0350
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0350
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0355
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0355
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0360
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0360
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0365
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0370
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0370
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0370
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0375
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0375
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0380
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0380
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0380
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0385
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0385
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0390
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0390
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0390
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0395
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0395
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0400
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0400
http://refhub.elsevier.com/S0019-1035(19)30209-X/rf0400

	Cooling patterns in rotating thin spherical shells — Application to Titan’s subsurface ocean
	1 Introduction
	2 Method
	3 Results
	4 Dynamical regime for buried oceans
	5 Implications for the dynamics and structure of Titan’s hydropshere
	6 Discussion
	Acknowledgments
	References


