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Finite difference method applied to the heat diffusion

In this practical we are interested in the heat diffusion. This phenomenon is modelled using
finite difference numerical methods in a 1D case. For such a problem, although the solid medium
is 3D, the temperature depends on only two variables: x, one of the three spatial coordinates
and t, the time, and

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
. (1)

The thermal diffusivity coefficient is denoted κ (m2 s−1). κ =
k

ρc
, where k is the thermal con-

ductivity (Wm−1 K−1), ρ is the density (kgm−3) and c is the specific heat capacity (J kg−1 K−1).

This practical starts with a simple case where the temperature is maintained constant at the
domain boundaries. This case allows to define the characteristic time for reaching the station-
nary regime or to show that for such a regime the temperature gradient does not depend on
κ. Some numerical issues are investigated such as CPU time and numerical divergence which
enable to show that implicit scheme never diverges. Few additionnal problems are proposed in
the event of all questions (1 to 6) have been previously addressed.
All codes/scripts have to be written using Python language and do not forget to insert a lot of
comments in your scripts to explain the different steps.

Figure 1: The medium is infinite in both x2 and x3 directions, and L represents the wall
thickness following the x1-axis (hereafter simply denoted as x).

1 Explicit scheme

The stationnary case addressed here is the heat diffusion within a solid medium where temper-
ature is set and maintained constant at both edges, for instance an infinite wall following x2

and x3 directions and of thickness L along the x1-axis (Fig. 1) For such a case, x1 = x, and
the two other dimensions can be ignored.

1.1. Start a new Python script named heat_diff_fd-es-dd-1.py. Such a name is proposed
for a heat diffusion code since fd means “finite differences” while es means “explicit
scheme” and dd signifies “Dirichlet-Dirichlet” for the boundary conditions.
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1.2. As a first approach the following parameters are proposed:

0.005 # kappa (thermal diffusivity m^2/s)
1 # Length L (m)
10.0 # Temperature at x=0, T0 (°C)
20.0 # Temperature at x=L, TL (°C)
0.0 # Initial temperature (except 0 and L, °C)
0.25 # x-axis discretization length dx (m)
2.5 # Time discretization, dt (s)
0.00001 # precision for convergence

They can be directly written in the script (hard coded solution) or they can be writ-
ten in an external input text file (named something like heat_diff_fd-es-dd-0.in, for
instance) that have to be read during the execution of the Python script.

1.3. In order to tend toward the largest abstraction degree, define the amount of cells for the
x-axis as a function of L and dx.

1.4. Write the lines composing the FD matrix by introducing the parameter A, as defined
during the lecture.

1.5. Write a function called prodMT which performs the product of the FD matrix and the
temperature vector (1D array) at a given time step. Inputs should be the matrix and the
temperature vector and the ouptput is the new temperature profile.

1.6. Test this function by a simple call in the script.

1.7. Write the iteration process (loop) which enables to compute the temperature profile evo-
lution, as a function of time, from the initial temperature condition (see item 1.2.). The
exit condition must be coded within the loop using a convergence criterion. For exam-
ple, it can be the sum of all differences, at the least-squares sense, for each cell, of two
temperature vector consecutive configurations.

1.8. Once the convergence is reached the final configuration of the temperature profile should
be a straightline connecting temperature values at x = 0 and x = L. Write the lines to
produce such a plot and add labels on axes. Insert a legend box if several profiles are
plotted on the same graph.

2 Stationnary case properties

While keeping the configuration as described in 1.2., perform a systematic exploration of κ,
between 0.001 and 0.012 m2 s−1, every 0.001 m2 s−1, and check that

2.1. the final temperature profile remains the same, which means that the stationnary case
does not depend on the thermal diffusivity;

2.2. the time to reach convergence is consistent with κ. Produce a plot of the convergence
time as a function of κ.
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3 Running time optimisation

3.1. Change the input values (item 1.2.) in order to perform a run with L = 2 m, dx = 0.05 m
and dt = 0.1 s, and find the way to measure the computing time for such a numerical
experiment. If the script is ran from a linux command window, the function time can do
the job.

3.2. Modify the function prodMT in order to only sum the products of matrix elements that
are not null and check the result in terms of CPU time.

3.3. By changing L values from 2 to 10 m, plot the CPU time gain between optimized and
not-optimized prodMT function, as a function of L.

4 Transient regime

We now consider a 50 cm thick granite wall kept at temperature of −5 ◦C. At a given time, the
temperature on the two faces (normal to x-axis) is instantaneously increased to 20 ◦C and we
propose to study the transient regime between the initial and the final states.

4.1. Create a new Python script (heat_diff_fd-es-dd-2.py, for instance) which can be
simply a copy of the previous one.

4.2. Create a new input file (heat_diff_fd-es-dd-1.in, for instance):

0.0000012 # kappa (thermal diffusivity m^2/s)
0.5 # Length L (m)
20.0 # Temperature at x=0, T0 (°C)
20.0 # Temperature at x=L, TL (°C)
-5.0 # Initial temperature (except 0 and L, °C)
0.01 # x-axis discretization length dx (m)
41 # Time discretization, dt (s)
0.0001 # precision for convergence

4.3. Check that the code runs properly and that the temperature profile converge toward a
horizontal line at T = 20 ◦C.

4.4. There are different ways to measure the diffusion characteristic time. We use here a
simple approach telling that convergence is obtained as soon as the temperature reaches
a value such that 90% of the initial temperature gap is filled. This temperature will be
named tc, set its value using the input values (4.2.).

4.5. In our case the previous condition means that we have to monitor the temperature at the
farest point of boundaries (i. e. middle f the wall) and to determine at which time step
this temperature becomes greater than or equal to tc. The theoretical value for such a
diffusion time is

τ =
L2

4κ
. (2)

Using the input conditions (4.2.) compute the value of the variable theotau as defined
in eq. (2) and compare it with the one discussed during lectures.
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4.6. Write the lines that allow to compute this value, named exptau, under the hyptohesis
(4.4.) and compare it with theotau. In practical, this can be done by stopping iterations
as soon as the 90% condition is fulfilled and to convert the time iteration rank into
duration using dt.

4.7. By modifying the wall thickness between 0.5 and 10 m, verify that experimental and
theoretical values are close. Create a graph showing the difference between theoretical
and experimental characteristic time diffusion values as a function of the thickness.

4.8. The characteristic distance of the heat front diffusing from the edge to the center, at time
τ , is l =

√
κτ , check that this value is always close to L/2, using experimental values of

τ .

5 Numerical divergence

5.1. Considering the input conditions as defined in (4.2.), go back to a wall thickness of 0.5 m
and change the time step to dt = 42 s. Run and check what is happening.

5.2. Modify the script lines in order to detect any divergent feature which imply an iteration
process break.

5.3. Print out the value of
dx2

δt
and compare it to κ.

Add a condition before starting time iteration that checks
κδt

dx2
<

1

2
, in order to stop the

code and not become numerically unstable.

5.4. By defining a dx range, explore the dt values that define the divergence domain, as the
orange domain in Fig. 2.

Figure 2: Divergence domain in orange as a function of dx.

2023-2024 (v1.2) XMS1GE060 (Heat diffusion practical) 4 / 6



6 Implicit scheme

Write a new script (named heat_diff_fd-is-dd-1.py) that solve the same partial derivative
equation as in eq. (1), but with implicit scheme. Test that this code cannot diverge whatever
the values of dt and dx.

7 Additional problems

7.1 Extra heat source in the medium

Using the case of heat propagation in a wall of infinite height and length and finite thickness
(Fig. 1), write a new version of the script in order to model the presence of a vertical plate
within the wall. The parameters and the boundary conditions are the same as in question 1.
This extra heat source is located at x = 0.4 m and the constant temperature is T = 16 ◦C.
It implies to define n1 and n2, the amount of points for each subdomain (located at left and
right with respect to the extra heat source), and assuming that n1 + n2 = n − 1. The initial
conditions have to be modified slightly. Create a figure to visualise the time evolution for such
a problem.

7.2 Two-layer wall

Using the case of heat propagation in a wall of infinite height and length and finite thickness
(Fig. 1), write a new version of the script in order to model the presence of a two-layer wall
using these input parameters

1 # Length L (m)
10.0 # Temperature at x=0, T0 (°C)
20.0 # Temperature at x=L, TL (°C)
0.05 # x-axis discretization length dx (m)
0.25 # Time discretization, dt (s)
0.00001 # precision for convergence

In the x-axis direction, the wall is composed by 1/3 of a medium defined by κ = 0.005 m2 s−1

and 2/3 of another medium characterised by κ = 0.0005 m2 s−1.

7.3 Neumann boundary condition

The studied problem is the heat diffusion through a semi-infinite medium such as the Earth’s
crust. The temperature varies only as a function of time and z-axis, the depth (positive towards
the Earth’s centre).
Write a new Python script to model the heat diffusion by imposing a constant temperature

at the surface (z = 0 km, T = 5◦C) and a thermal gradient of
dT

dz
= 30 ◦C/km at the other

domain boundary. At first approach use these input parameters
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1.6e-6 # kappa, granite thermal diffusivity (m^2/s)
100 # Depth (m)
5.0 # Temperature at z=0, T0 (°C)
0.03 # Temperature gradient at max depth (C/m)
-100.0 # Initial temperature (except z=0)
1 # z-axis discretization length dz (m)
50000 # Time discretization, dt (s)
0.000001 # precision for convergence

Whatever the chosen scheme (implicit or implicit), there are two ways to treat this problem:

• the matrix M is kept unchanged and the Neumann boundary condition is imposed after
the call to the function prodMT by modifying the last cell of the temperature vector,
thanks to the uncentered derivate definition;

• the last row of the matrix M is modified to take into account the gradient boundary
condition and also the last cell of the temperature vector after the call to the function
prodMT.

The evolution of temperature through the first 100 metres of crustal depth should look some-
thing like Fig. 3.

Figure 3: Heat diffusion through a granitic crust assuming a thermal gradient of 30 ◦ C/km.

To go further: add the possibility for the temperature at the surface (z = 0) to oscillate as a
function of time with a characteristic period of 24 h. Define the depth at which these oscillations
become negligible.
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