OEDEIPUS: a new tool to study the dynamics of planetary interiors

G. Choblet,1 O. Čadek,2 F. Couturier1 and C. Dumoulin1

1Laboratoire de planétologie et géodynamique, UMR 6112, CNRS-Université de Nantes, Nantes, France. E-mail: gael.choblet@univ-nantes.fr
2Department of Geophysics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Acceptance date: 2007 February 23. Received 2006 November 29; in original form 2006 July 25

SUMMARY
We present a new numerical method to describe the internal dynamics of planetary mantles through the coupling of a dynamic model with the prediction of geoid and surface topography. Our tool is based on the simulation of thermal convection with variable viscosity in a spherical shell with a finite-volume formulation. The grid mesh is based on the ‘cubed sphere’ technique that divides the shell into six identical blocks. An investigation of various numerical advection schemes is proposed: we opted for a high-resolution, flux-limiter method. Benchmarks of thermal convection are then presented on steady-state tetrahedral and cubic solutions and time-dependent cases with a good agreement with the few recent programs developed to solve this problem.

A dimensionless framework is proposed for the calculation of geoid and topography introducing two dimensionless numbers: such a formulation provides a good basis for the systematic study of the geoid and surface dynamic topography associated to the convection calculations. The evaluation of geoid and surface dynamic topography from the gridded data is performed in the spectral domain. The flow solver is then tested extensively against a precise spectral program, producing response functions for geoid as well as bottom and surface topographies. For a grid mesh of a reasonable size ($6 \times 64 \times 64 \times 64$) a very good agreement (to within ~ 1 per cent) is found up to spherical harmonic degree 15.

Key words: dynamic topography, geoid, internal dynamics, numerical models, planetary mantles.

1 INTRODUCTION

Several of today’s questions in the study of planetary interiors imply the use of models simulating thermal convection in a spherical geometry. This is either implicitly required by the internal dynamics (effect of curvature on thermal instabilities and heat flux budget, correct scaling of mass flux when addressing compositional gradients, modelling plate motion on a sphere) or due to a better comparison of these with geophysical data often expressed as a decomposition into spherical harmonics (e.g. in the case of data from space exploration). In addition, in order to address many problems a numerical model of thermal convection should handle large viscosity gradients: (i) the effective viscosity of silicates or ices is very sensitive to thermodynamical parameters, inducing very specific dynamical regimes such as the asymptotic conductive lid regime (e.g. Davaille & Jaupart 1993); (ii) in order to mimic the plate behaviour, more complex rheologies have been proposed that imply even larger viscosity gradients (e.g. Tackley 2000a,b; see also Bercovici 2003 for a review).

The first programs simulating thermal convection in a spherical shell were based on a spectral approach (Glatzmaier 1988; Zhang 1995) since this allows an elegant treatment in the case of a viscosity field that is constant or radius-dependent. However, these methods lose part of their interest in the case of large lateral viscosity variations. A first attempt to solve variable viscosity convection with a grid-based method is proposed by Hsui et al. (1995) after a finite element discretization developed in the isoviscous case (program Terra) by Baumgardner (1985). Another technique based on spherical coordinates is proposed by Ratcliff et al. (1996). To the authors’ knowledge, the first robust program solving Stokes flow and thermal convection in a spherical shell for a fluid with strongly variable viscosity (CITCOMs) is then presented by Zhong et al. (2000). Based on the finite element program CITCOM (Moresi & Gurnis 1996), this version uses brick elements (eight nodes) and the sphere is divided in 12 blocks of approximately equal size. This mesh is well suited for parallel computing and the FEM formulation ensures the robustness of the program. Though it seems necessary to have several different tools to solve this problem (especially when spherical shell laboratory experiments are not a simple set-up to build), new numerical solutions have not been proposed until very recently. In the framework of finite volumes or finite differences methods, the necessity to propose complex non-conform meshes to solve the pole problem for the spherical geometry induced a relatively heavy computational treatment. Alternatively, the more precise and more ‘elegant’ spectral
formulation for such a geometry (through the use of spherical harmonic functions) loses a significant part of its interest when azimuthal viscosity variations are introduced. Three finite volume formulations have been proposed recently (Kageyama & Sato 2004; Choblet 2005; Stemmer et al. 2006) all resulting mainly from a new geometrical treatment. The first one, based on the ‘Yin Yang’ grid uses the classical spherical coordinate system and the poles are excluded. The two latter ones use a decomposition of the sphere into six blocks obtained through the projection of a cube, the ‘cubed sphere’ decomposition (while among the five platonic solids, Terra used the icosahedrons) and either formulate the equations directly in the natural (but non-orthogonal) coordinate system (Choblet 2005) or uses the Cartesian coordinates of a ‘smoothed cubed sphere’ mesh where the non-orthogonal aspect is reduced iteratively (Harder & Hansen 2005; Stemmer et al. 2006).

Observational constraints on the style of thermal convection in planetary bodies are still rare. Two potentially important sources of information about the internal dynamics of a planet are the geoid and topography. In a viscous mantle, the stresses arising from mantle flow deform all density interfaces, including the surface. The pattern of such a ‘dynamic’ topography and its magnitude bear evidence about the deformation all density interfaces, including the surface. The pattern of such a ‘dynamic’ topography and its magnitude bear evidence about the deformation.
activated creep is termed the Frank-Kamenetskii approximation (Frank-Kamenetskii 1969). In the case of the stagnant lid regime, most of the viscosity variations occur in the cold conductive layer at the surface. Thus, if the two functions are scaled properly, heat transfer and flow activated creep is termed the Frank-Kamenetskii approximation (Frank-Kamenetskii 1969). In the case of the stagnant lid regime, most of the viscosity variations occur in the cold conductive layer at the surface. Thus, if the two functions are scaled properly, heat transfer and flow

Table 1. Variables and symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Associated constant or variable</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Thermal expansivity</td>
<td>K(^{-1})</td>
</tr>
<tr>
<td>δ</td>
<td>Thickness of the shell</td>
<td>m</td>
</tr>
<tr>
<td>(δ_{ij})</td>
<td>Kronecker delta (1 if (i = j), 0 if (i \neq j))</td>
<td>—</td>
</tr>
<tr>
<td>(Δ)</td>
<td>Density difference across the bottom interface</td>
<td>kg \cdot m(^{-3})</td>
</tr>
<tr>
<td>(ΔT)</td>
<td>Temperature difference across the shell</td>
<td>K</td>
</tr>
<tr>
<td>(E)</td>
<td>Thermal expansion dimensionless parameter (see 4.1)</td>
<td>—</td>
</tr>
<tr>
<td>(f)</td>
<td>Ratio between the two radii, (f = r_b/r_i = r_b/r_t)</td>
<td>—</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravitational acceleration</td>
<td>m \cdot s(^{-2})</td>
</tr>
<tr>
<td>(G)</td>
<td>Gravitational constant</td>
<td>m(^3) \cdot s(^{-2}) \cdot kg(^{-1})</td>
</tr>
<tr>
<td>(G^{\ast})</td>
<td>Gravitational dimensionless parameter (see 4.1)</td>
<td>—</td>
</tr>
<tr>
<td>(γ)</td>
<td>Viscosity exponential parameter</td>
<td>—</td>
</tr>
<tr>
<td>(h, \bar{h})</td>
<td>Volumetric heating rate, dimensionless value</td>
<td>W \cdot m(^{-3})</td>
</tr>
<tr>
<td>(k, \bar{k})</td>
<td>Thermal conductivity, thermal diffusivity</td>
<td>W m(^{-1}) K(^{-1}), m(^{2}) s(^{-1})</td>
</tr>
<tr>
<td>(\mu, \mu_0)</td>
<td>Dimensionless viscosity, surface (reference) viscosity</td>
<td>—, Pa s</td>
</tr>
<tr>
<td>(N, \bar{N})</td>
<td>Geoid height, dimensionless value</td>
<td>m, —</td>
</tr>
<tr>
<td>(N^\circ)</td>
<td>Number of grid cells</td>
<td>—</td>
</tr>
<tr>
<td>(p)</td>
<td>Dimensionless pressure</td>
<td>—</td>
</tr>
<tr>
<td>(r)</td>
<td>Unit radial vector</td>
<td>—</td>
</tr>
<tr>
<td>(r_b, r_h)</td>
<td>Inner radius (e.g. radius of the CMB), dimensionless value</td>
<td>m, —</td>
</tr>
<tr>
<td>(r_e, r_i)</td>
<td>Outer radius (e.g. radius of the planet), dimensionless value</td>
<td>m, —</td>
</tr>
<tr>
<td>(ρ_0)</td>
<td>Surface (reference) density</td>
<td>kg m(^{-3})</td>
</tr>
<tr>
<td>(Ra_{RS})</td>
<td>Surface Rayleigh number, internal Rayleigh number</td>
<td>—, —</td>
</tr>
<tr>
<td>(σ_{rr}, \bar{σ}_{rr})</td>
<td>Normal radial stress, dimensionless value</td>
<td>Pa, —</td>
</tr>
<tr>
<td>(\bar{σ}_{rr})</td>
<td>Average normal radial stress, dimensionless value</td>
<td>Pa, —</td>
</tr>
<tr>
<td>(T)</td>
<td>Dimensionless temperature</td>
<td>—</td>
</tr>
<tr>
<td>(\bar{t}, \bar{t}_1)</td>
<td>Surface dynamic topography, dimensionless value</td>
<td>m, —</td>
</tr>
<tr>
<td>(\bar{t}_c, \bar{t}_t)</td>
<td>Bottom dynamic topography, dimensionless value</td>
<td>m, —</td>
</tr>
<tr>
<td>(τ)</td>
<td>Deviatoric part of the dimensionless stress tensor</td>
<td>—</td>
</tr>
<tr>
<td>(θ, ϕ)</td>
<td>Spherical coordinates (co-latitude, longitude)</td>
<td>—</td>
</tr>
<tr>
<td>(\bar{U}, \bar{V})</td>
<td>Gravity potential, dimensionless value</td>
<td>m(^2) s(^{-2})</td>
</tr>
<tr>
<td>(\bar{V})</td>
<td>Velocity field, dimensionless value</td>
<td>m s(^{-1})</td>
</tr>
<tr>
<td>(ξ, η, Δξ, Δη)</td>
<td>Cubed sphere angular coordinates, angular increments</td>
<td>—</td>
</tr>
<tr>
<td>(X, Y, \bar{δ}, C, D)</td>
<td>Cubed sphere auxiliary variables</td>
<td>—</td>
</tr>
<tr>
<td>(Y_{lm})</td>
<td>Spherical harmonic function of degree (l) and order (m)</td>
<td>—</td>
</tr>
<tr>
<td>(ζ_{im})</td>
<td>Coefficient for variable (\bullet) associated to degree (l) and order (m)</td>
<td>—</td>
</tr>
</tbody>
</table>

As mentioned earlier, more realistic aspects can certainly be proposed when dealing with planetary dynamics in terms of rheology: the stress or grain size dependence, the influence of water (among other volatiles) or melt fraction, and the necessity to incorporate more exotic rheologies to produce plate-like behaviour. However, these complexities are mostly conceptual ones: the aim of the present study being to describe the numerical tool, all the above complexities may possibly be described by our numerical method as long as it handles large enough viscosity gradients (with the notable exception of anisotropic viscosity).

2.3 (No) compositional dynamics

It is now well established that density and viscosity gradients of compositional origin in the Earth’s mantle are likely to play a significant role (i.e. as important as the thermal ones) in its dynamics, at least in two crucial regions: the lithosphere (both continental, e.g. van Gerven et al. 2004 and oceanic, e.g. Choblet & Parmentier, 2001) and the deepest part of the lower mantle (e.g. Ishii & Tromp 2004; Deschamps & Trampert 2004). It is also believed that most of the lunar interior dynamics subsequent to the freezing of a primordial magma ocean are mostly shaped by compositional stratification and overturn (e.g. Hess & Parmentier 2005). Moreover, some elements such as radioactive elements and volatiles in silicates and impurities in ices, even if they do not affect density nor viscosity due to very small concentrations, play an important role in the study of the evolution of planets. A recent good example is the enigma of the methane content of Titan’s atmosphere, maybe of internal origin (Tobie et al. 2006). All these effects have direct consequences on the geoid and topography.

© 2007 The Authors, GJI, 170, 9–30
Journal compilation © 2007 RAS
For all these reasons, it seems important that dynamic models include the possibility of the transport of chemical species through the pure advection of a scalar field with the flow (this would also enable the description of the transport of physical quantities such as grain size). Such a program simulating thermochemical convection in a spherical shell is developed for the first time by McNamara (2004). Though the advection scheme proposed in this tool is built to minimize numerical diffusion (see Section 3.3), even this small diffusion might not be acceptable when the real diffusion is negligible. In the framework of our program, we believe that the most appropriate method may be the tracers method described by Tackley & King (2003) rather than more complex ‘surface reconstruction methods’. Indeed, though the grid mesh is not strictly uniform and though the coordinates system is not orthogonal, both the algorithm proposed by Tackley & King (2003) in a cartesian context and the properties of the method are conserved.

3 NUMERICAL METHOD

In this section, we mostly refer to the finite volume method used to solve the thermal convection problem. The mesh (Section 3.1) and the techniques used in the flow solver (Section 3.2) are already described in an earlier paper (Choblet 2005). New aspects developed here are mostly a new orientation of the coordinate system (cf. Section 3.1), a benchmark of advection schemes in the cubed sphere context (Section 3.3) and the communication between blocks (cf. Appendix B).

3.1 Mesh

The cubed sphere method proposed by Ronchi et al. (1996) is first designed to avoid coordinate singularities at the poles. Other interesting aspects of the method are: (i) the fact that the physical grid defined on the spherical surface is reasonably close to a uniform grid, (ii) the decomposition of the spherical shell into six identical regions, with the same metric and (iii) an efficient parallel implementation. The mapping of the spherical surface is obtained by the projection of the sides of a circumscribed cube onto this surface. Fig. 1 illustrates this technique and introduces the cubed sphere coordinate system \((r, \xi, \eta)\). Note that it is not an orthogonal system. In addition, it appears that angular coordinates \(\xi\) and \(\eta\) are such that a symmetry between them is expected in all equations. We explicitly write the equations in this coordinate system in the program, thus avoiding the computation of the metric tensor elements during the numerical computation. As proposed by Ronchi et al. (1996), the following auxiliary variables are introduced in order to simplify the expressions of differential operators:

\[
\begin{align*}
X &= \tan(\xi), \\
Y &= \tan(\eta), \\
\delta &= 1 + X^2 + Y^2, \\
C &= \sqrt{1 + X^2}, \\
D &= \sqrt{1 + Y^2}.
\end{align*}
\]

This surface is then mapped onto a rectangular grid, where the equations are solved using a standard finite volumes technique designed for regular meshes. The gridding technique can be illustrated by two sets of great circles spaced with a uniform angular increment \((\Delta \xi\) and \(\Delta \eta)\) with \(\xi\) and \(\eta\) varying between \(-\pi/4\) and \(\pi/4\). The mesh is then extended radially between the two spherical surfaces bounding the

Figure 1. The sphere decomposed into six blocks and the curvilinear coordinate system on block 0. The main difference with spherical coordinates is that curves of constant values of the second coordinate \(\eta\) are great circles (or ‘horizontal meridians’) and not parallels.
In the cubed sphere coordinate system, eqs (1) and (2) provide, respectively, the following projections:

\[\nabla \cdot \mathbf{V} = \frac{1}{r^2} (r^2 \tau^r)_r + \frac{3}{r D C} \left(\frac{V^\eta}{\delta^3/2} \right)_\eta + \frac{3}{r C D^2} \left(\frac{V^n}{\delta^3/2} \right)_\eta = 0 \] \hspace{1cm} (6)

and, along \(r \),

\[p_r = \frac{1}{r^2} (r^3 \tau^r)_r + \frac{3}{r D C} \left(\frac{\tau^r}{\delta^3/2} \right)_\xi + \frac{3}{r C D^2} \left(\frac{\tau^n}{\delta^3/2} \right)_\eta - RaT \] \hspace{1cm} (7)

along \(\xi \),

\[\frac{1}{r} \left(\frac{X Y}{D} p_\eta + D p_\xi \right) = \frac{1}{r^2} (r^3 \tau^\eta)_r + \frac{3}{r D C} \left(\frac{\tau^\eta}{\delta^3/2} \right)_\xi + \frac{3}{r C D^2} \left(\frac{\tau^n}{\delta^3/2} \right)_\eta \] \hspace{1cm} (8)

along \(\eta \),

\[\frac{1}{r} \left(\frac{X Y}{C} p_\xi + C p_\eta \right) = \frac{1}{r^2} (r^3 \tau^\xi)_r + \frac{3}{r D C} \left(\frac{\tau^\xi}{\delta^3/2} \right)_\xi + \frac{3}{r C D^2} \left(\frac{\tau^\eta}{\delta^3/2} \right)_\eta \] \hspace{1cm} (9)

where the components \(\tau^{**} \) of the deviatoric part of the stress tensor (\(\sigma = -p \mathbf{I} + \tau \)) are

\[\tau^{**} = 2 \mu \tau^r, \] \hspace{1cm} (10)

\[\tau^\xi = \mu \left[r \left(\frac{V^\xi}{r} \right)_r \right] + \frac{D}{r} V^\eta + \frac{X Y}{r D} V^r, \] \hspace{1cm} (11)

Figure 2. The grid mesh as six ‘cubic’ blocks. The azimuthal dimension of cells varies linearly with the radius.

3.2 Flow solver

In the cubed sphere coordinate system, eqs (1) and (2) provide, respectively, the following projections:
solve these problems, we have tested three advection methods in the 'cubed sphere' context described in Appendix A: (i) the classical first order schemes) or dispersive (second order schemes) terms. Moreover, in the context of non-orthogonal coordinate systems, the numerical better a different partial differential equation than the simple advective transport eq. (16): this modified equation includes diffusive (for first order) and transfer operators and coarse grid operators on all grids derived from the fine grid discretization (see Choblet 2005, for further details).

The flow solver is decoupled from the treatment of the energy equation: the velocity field computed at time step \(n \) is used for the advection of heat in the computation of temperature at time \(n + 1 \). The pressure and velocity fields are then updated simultaneously using the new temperature field to compute buoyancy and viscosity. We use a FAS-multigrid algorithm with V-cycles, a Gauss–Seidel smoother, linear transfer operators and coarse grid operators on all grids derived from the fine grid discretization (see Choblet 2005, for further details).

3.3 Advection-diffusion scheme

The equation describing conservation of energy is in the dimensionless form:

\[
T_x + T_y V^x + \frac{\delta}{r C D^2} T_y V^x + \frac{\delta}{r C D^2} T_y V^y = \frac{1}{r^2} \left(T_{xx} V^x + T_{yy} V^y + \frac{2 X Y T_{xy}}{C^2 \delta^2} \right) + h. \tag{16}
\]

A classical drawback of grid based methods used to solve the advection problem is that discrete schemes usually provide solutions that satisfy better a different partial differential equation than the simple advective transport eq. (16): this modified equation includes diffusive (for first order schemes) or dispersive (second order schemes) terms. Moreover, in the context of non-orthogonal coordinate systems, the numerical diffusion is anisotropic: for the cubed-sphere coordinates, it is larger along \(\xi \) and \(\eta \) directions (e.g. Hernlund & Tackley 2003). In order to solve these problems, we have tested three advection methods in the 'cubed sphere' context described in Appendix A: (i) the classical first
order ‘upwind’ method produces large amounts of numerical diffusion and it is only used as a reference scheme, (ii) the ‘MPDATA’ method, used in several programs simulating thermal convection in a Cartesian context to study mantle dynamics (e.g. Tackley 1994) and (iii) the ‘van Leer’ method used more commonly in the context of compressible fluids (van Leer 1979).

The test we propose is based on a solid rotation velocity field around the x-axis, that is, proportional to

$$
V = e_x \otimes \mathbf{r} = \frac{\mathbf{r}}{\delta} \begin{bmatrix} 0 \\ -YD \\ XC \end{bmatrix}.
$$

The test we propose is based on a solid rotation velocity field around the x-axis, that is, proportional to

$$
V = e_x \otimes \mathbf{r} = \frac{\mathbf{r}}{\delta} \begin{bmatrix} 0 \\ -YD \\ XC \end{bmatrix}.
$$

We initially impose a sphere of radius 0.1 with an anomalous temperature 1 within a 0 temperature field in block 0 of the cubed sphere. It is then advected with the rotation velocity field so that if diffusion were negligible, the field should be invariant. We measure numerical diffusion through the volume of the region bounded by isotherm ($T = 0.2$) (Fig. 3). Fig. 4 displays a comparison of the different schemes using this criterion: increasing the number of correction steps ($iord$) with ‘antidiffusive’ velocities in the MPDATA scheme provides better results. Even with $iord = 2$, the volume of the hot sphere remains smaller on a mesh including 32^3 grid cells than the reference upwind scheme with a twice larger resolution (64^3 grid cells). Tests of the van Leer methods, whatever slope is used, return even better results; the volume obtained with slope 2 (geometrical average, see Appendix A) after a similar time is twice smaller than the one obtained for $iord = 3$. Slope 1 (MC limiter, see Appendix A) leads to a volume that increases less (40 per cent smaller than the increase obtained for slope 2). Even though the treatment of the energy equation corresponds only to a small fraction of the global costs associated to the simulation of thermal convection with our method, the CPU cost of the various advection methods is displayed in Table 3. The van Leer methods are both twice more time-consuming than the simple upwind scheme. Increasing the number of corrective steps in MPDATA increases the computation time ($iord = 4$ already
costs twice as much as the van Leer methods). For all these reasons, we will use the quite simple and quite efficient van Leer method (with MC limiter slope 1) in the following computations.

Further remarks on the numerical diffusion process are illustrated on Fig. 5. While the reference upwind scheme provides a strong flattening of the volume compared to the initial spherical shape, this feature is attenuated in the van Leer case. The main reason for this flattening is that the velocity field we employ for the test has a zero \(V_r \) component. It should thus be noted that this flattening does not reflect anisotropy in the numerical diffusion process. Anisotropy can be observed on the ‘azimuthal’ projections (right in Fig. 5) where a significant distortion exists for the upwind scheme while the projection of the volume remains circular in the van Leer case (coordinates \(\xi \) and \(\eta \) playing a role that should be strictly equivalent in this test).

4 Evaluation of the Geoid and Dynamic Topography

In this section, we give basic formulas relating the stresses due to thermal convection in planetary interiors with surface observables, namely the dynamic topography and the geoid. We will follow the approach described by Ricard et al. (1984) and Richards & Hager (1984). For the sake of clarity, we first present these equations using physical quantities (denoted with tildes) and then we rewrite them in dimensionless forms, consistent with descriptions considered in previous sections.

4.1 Equations

The stresses arising from the viscous flow in the mantle deform the surface of the planet and the bottom boundary (sometimes referred to in this text as the CMB, as is the case for the Earth and most terrestrial planets). The deviation \(\tilde{r} \) of the deformed surface from a spherical shape, \(\tilde{r}_i(\theta, \phi) = \tilde{r}_s(\theta, \phi) - \hat{r}_i \).
where \hat{r}_s is the radius of the surface at a point with spherical coordinates θ and ϕ, and \hat{r}_i is the mean radius of the planet, can be obtained from the equilibrium of radial forces evaluated on a sphere of radius \hat{r}_i. In a first approximation, we can write

$$\hat{\sigma}_r(\hat{r}_i, \theta, \phi) = \hat{\sigma}_r(\hat{r}_i) = -\rho_0 g \hat{t}_i(\theta, \phi),$$

where $\hat{\sigma}_r$ is the radial component of the traction force at a spherical boundary of radius \hat{r}_i,

$$\hat{\sigma}_r(\hat{r}_i, \theta, \phi) = -\hat{p}^r(\hat{r}_i, \theta, \phi) + 2\mu(\hat{r}_i, \theta, \phi) \left[\frac{\partial \hat{V}^r(\hat{r}_i, \theta, \phi)}{\partial \hat{r}} \right]_{\hat{r}=\hat{r}_i}$$

(20)

$\hat{\sigma}_r$ is its average value,

$$\hat{\sigma}_r(\hat{r}_i) = \int_0^{2\pi} d \phi \int_0^\pi \sigma_r(\hat{r}_i, \theta, \phi) \sin \theta \, d \theta \, d \phi$$

(21)

and g is the gravitational acceleration which is supposed here to be constant throughout the shell. The topography \hat{t}_i induced by mantle flow is usually referred to as dynamic topography. In evaluating the forces due to topographic masses the right-hand side of eq. (19), we only considered the lithostatic pressure and neglected the effect of self-gravitation. Eq. (19) would have a more complex form if the viscous mantle is overlaid by an elastic or viscoelastic layer, as in Zhong (2002), or a membrane (e.g. Ribe 1992). A similar equation of equilibrium for the surface can be written for the CMB. If we neglect the variations of pressure in the liquid core, associated with gravitational effects of density anomalies in the mantle and the surface and CMB topographic masses, we can express the topography \bar{t}_c of the CMB as follows:

$$\bar{t}_c(\theta, \phi) = \frac{\hat{\sigma}_r(\hat{r}_s, \theta, \phi) - \hat{\sigma}_r(\hat{r}_b)}{\Delta \rho_g},$$

(22)

where $\Delta \rho_g$ is the density jump at the CMB.

The anomalies of gravitational potential \bar{U} induced by thermal convection in the shell are a superposition of the gravitational signals from topographies \bar{t}_s and \bar{t}_c, and the gravitational signal induced by density anomalies in the shell. Using the integral expression for gravitational potential and eqs (19) and (22), we obtain

$$\bar{U}(\bar{r}', \theta, \phi) = -\frac{G\bar{r}^2}{g} \int_0^{\bar{r}} \int_0^\pi \int_0^{2\pi} \hat{\sigma}_r(\hat{r}, \theta', \phi') \sin \theta' \, d\theta' \, d\phi'$$

$$+ \frac{G\bar{r}^2}{g} \int_0^{\bar{r}} \int_0^\pi \int_0^{2\pi} \hat{\sigma}_r(\hat{r}_b, \theta, \phi) \sin \theta' \, d\theta' \, d\phi'$$

$$+ G \int_0^{\bar{r}} \int_0^\pi \int_0^{2\pi} \Delta \hat{p}(\hat{r}, \theta', \phi') \sin \theta' \, d\theta' \, d\phi' \, d\hat{r},$$

(23)

where G is the gravitational constant, $\Delta \hat{p}$ are the density anomalies in the mantle, and $\hat{d}(\hat{r}', \theta', \phi' | \hat{r}, \theta, \phi)$ is the distance between the points $(\hat{r}', \theta', \phi')$ and (\hat{r}, θ, ϕ). If potential \bar{U} is known we can determine the height of the geoid from the Bruns theorem (Lambeck 1988),

$$N(\theta, \phi) = \bar{N}(\bar{r}_c, \theta, \phi) / g.$$

(24)

We will show in Section 4.2 that the evaluation of integrals in eq. (23) can easily be done in spectral domain.

Comparison of the predicted geoid and dynamic topography with the observed data requires the predicted quantities to be expressed in physical units. With the characteristic scales defined above, the radial traction and density fields used in the computation of geoid and topography are obtained from results of the thermal convection model with the following relationship: $\hat{\sigma}_r = (\mu_0 k / d^2) \sigma_r$. In this context, the dimensionless dynamic topography is

$$\bar{\hat{t}}_c(\theta, \phi) = \bar{t}_c / d = -\frac{E}{Ra} [\sigma_r(r_i, \theta, \phi) - \sigma_r(r_i)]$$

(25)

where dimensionless number $E = \alpha \Delta T$, measuring thermal expansion, is introduced. The dimensionless version of eq. (23) is

$$\bar{U}(r, \theta, \phi) = -\frac{r^2}{Ra} \int_0^{\pi} \int_0^{2\pi} \sigma_r(r, \theta', \phi') \sin \theta' \, d\theta' \, d\phi'$$

$$+ \frac{r^2}{Ra} \int_0^{\pi} \int_0^{2\pi} \sigma_r(r_b, \theta', \phi') \sin \theta' \, d\theta' \, d\phi'$$

$$- \int_0^{\pi} \int_0^{2\pi} \bar{T}(r', \theta', \phi') r'^2 \sin \theta' \, d\theta' \, d\phi' \, dr'.$$

(26)

The dimensionless height of the geoid is then

$$\bar{N}(\theta, \phi) = \bar{\bar{N}} / d = G^* E \bar{U}(r, \theta, \phi),$$

(27)

where $G^* = G \rho_0 d^4 / g$ is a gravitational dimensionless parameter. The scales introduced here are determined by the scaling of the internal dynamics problem (eqs 1–3). Therefore, their values are not really significant for the geoid and the dynamic topography: for example, length scale d (thickness of the convective shell) is significantly larger than the characteristic values of \bar{N} or $\bar{\hat{t}}_c$...
4.2 Spectral evaluation

The computation of the surface dynamic topography, eq. (19), requires the radical component of the traction \(\sigma_r \) at the upper boundary to be evaluated from a dimensionless version of eq. (20). This quantity is directly computed on the grid described in Section 3.1. For many applications, however, the surface topography needs to be expressed in terms of a spherical harmonic series. In this paper, for the sake of simplicity of notation, we use the complex spherical harmonic basis \(\{ Y_{\ell m} \} \) which is orthonormal over the unit sphere:

\[
\int_0^{2\pi} \int_0^{\pi} Y_{\ell m}(\theta, \phi) Y_{\ell' m'}^{\ast}(\theta, \phi) \sin \theta \, d\theta \, d\phi = \delta_{\ell \ell'} \delta_{m m'},
\]

where the asterisk denotes complex conjugation and \(\delta_{ij} \) is the Kronecker delta. The amplitude \(t_s \) of the dynamic topography at a point \(\{ \theta, \phi \} \) can then be approximated as follows,

\[
t_s(\theta, \phi) = \sum_{\ell,m=-\ell}^{\ell_{\max}} (t_{s})_{\ell m} Y_{\ell m}(\theta, \phi),
\]

where \(\ell_{\max} \) is the maximum degree considered and \((t_{s})_{\ell m} \) are the spherical harmonic coefficients of degree \(\ell \) and order \(m \),

\[
(t_{s})_{\ell m} = \int_0^{2\pi} \int_0^{\pi} t_{s}(\theta, \phi) Y_{\ell m}^{\ast}(\theta, \phi) \sin \theta \, d\theta \, d\phi
\]

(30)

(for more details, see Jones 1985 and Varshalovich et al. 1988). If \(t_{s} \) is given at discrete points \(\{ \theta_i, \phi_i \}, i = 1, 2, \ldots, N_s \), the integral in eq. (30) can be replaced by a sum and the coefficients \((t_{s})_{\ell m} \) can be evaluated using the following simple formula:

\[
(t_{s})_{\ell m} = \sum_{i=1}^{N_s} t_{s}(\theta_i, \phi_i) Y_{\ell m}^{\ast}(\theta_i, \phi_i) \Delta S_i,
\]

where \(\Delta S_i \) is the surface area corresponding to the \(i \)-th point, normalized so that \(\sum_{i=1}^{N_s} \Delta S_i = 4\pi \). Eq. (25) thus reduces to

\[
(t_{s})_{\ell m} = - \frac{E}{R_a} (\sigma_r)_{\ell m}.
\]

(32)

Note that the summation in eq. (29) is done from degree 1 to \(\ell_{\max} \). The degree-zero term corresponds to the mean value of \(t_s \) over the sphere and is by definition equal to zero. The choice of the cut-off degree \(\ell_{\max} \) in eq. (29) depends on the density of gridpoints. Since only the spherical harmonics whose half-wavelengths are greater than the size of the maximum grid step can be retrieved from the grid data, \(\ell_{\max} \) must satisfy the condition

\[
\ell_{\max} < \frac{\pi \lambda_s}{\max[\lambda_i]},
\]

(33)

where \(\lambda_i \) is the grid step.

The calculation of the geoid, eq. (27), requires the evaluation of the volume and surface integrals in eq. (26) for gravitational potential. This integration is usually also carried out in spectral domain. First, we express all the quantities appearing in eq. (26) in terms of spherical harmonic expansions:

\[
X(r, \theta, \phi) = \sum_{\ell=1}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} X_{\ell m}(r) Y_{\ell m}(\theta, \phi),
\]

(34)

where \(X \) stands for \(U, T \) and \(\sigma_r = \bar{\sigma}_r \), evaluated on both interfaces \((r = r_t \) and \(r = r_b) \). The terms of degree zero are not included in summation as we assume that all quantities considered represent deviations from average values. Substituting eq. (34) into (26), using the addition theorem (e.g. Burša & Pěč 1993), and invoking the orthonormality property (28), we obtain,

\[
U_{\ell m}(r) = \frac{4\pi r}{2\ell + 1} \left[- \frac{(\sigma_{r})_{\ell m}}{R_a} \left(\frac{r_b}{r} \right)^{\ell+2} + \frac{(\sigma_{r})_{\ell m}}{R_a} \left(\frac{r_b}{r} \right)^{\ell+2} - \int_{r_b}^r \left(\frac{r'}{r} \right)^{\ell+2} T_{\ell m}(r') \, dr' \right].
\]

(35)

where \(U_{\ell m} \) are the spherical harmonic coefficients of the external \((r \geq r_t) \) gravitational potential. The spherical harmonic coefficients of the geoid, eq. (24), are then simply

\[
N_{\ell m} = G^* E U_{\ell m}(r_t).
\]

(36)

5 TESTS AND BENCHMARK

5.1 Flow solver and response functions

The flow solver was tested successfully against analytical solutions for both an isoviscous fluid and a fluid with radius-dependent viscosity (Choblet 2005). These tests are based on the differential rotations of the bounding spheres.

To further test the flow solver, we have computed response functions, that is, the topography and geoid produced by a normalized density anomaly located at a varying depth (for details, see, e.g. Ricard et al. 1984; Hager & Clayton 1989) and compared our results with those obtained with a spectral method described by Čadek (1989). We thus solve only eqs (1), (2), (32), (35) and (36): eq. (3) describing the
conservation of energy is not considered. Boundary conditions are no-slip on top and free-slip on the bottom. We use the following values of the dimensionless parameters:

\[
\begin{align*}
 f &= 0.5 \\
 Ra &= 1 \\
 E &= 1 \\
 G^* &= 0.5G
\end{align*}
\]

(37)

The dimensionless temperature field is

\[
T = \begin{cases}
 Y_{mn}(\theta, \phi)/\Delta r & \text{if } r \in [r_0 + (i - 1/2)\Delta r, r_0 + (i + 1/2)\Delta r], \\
 0 & \text{elsewhere.}
\end{cases}
\]

(38)

Three viscosity functions have been considered. The first case is isoviscous, and two radius-dependent viscosities are tested (Fig. 6): profile 1 mimics the radial variations observed in a stagnant lid regime with a range of approximately four orders of magnitude while profile 2 is a simple step-like viscosity variation. Note that we do not introduce azimuthal gradients in the tested viscosity field because the spectral method we compare our results with, would lose its interest in this case.

We use both the grid-based flow solver described above (cf. Section 3.2, the grid mesh includes $6 \times 64 \times 64 \times 64$ cells corresponding to the discretization used in classical thermal convection calculations) and a solver based on a spectral method in order to produce the velocity and pressure fields that are then used to compute dimensionless values of the dynamic topography and geoid (eqs 32 and 36). For each couple (ℓ, m), dynamic topographies at the surface, t_s, and at the CMB, t_c, as well as the geoid N are evaluated as a function of the mean depth of the density anomaly. We then compute the spherical harmonic coefficients $(t_s)_{m\ell}$, $(t_c)_{m\ell}$ and $N_{m\ell}$ using the integrations indicated in Section 4.2. Besides computing the spherical harmonic coefficients at the same degree as the load, we have also ensured that the coefficients of geoid and topographies at other degrees and orders effectively equal zero. We have also tested that the response function at degree ℓ are identical for any $m \leq \ell$.

Figs 7–9 display some results of these tests obtained for degrees 2, 5, 10 and 15. Concerning the absolute values of the response functions, the isoviscous case displays the classical result that increasing degree ℓ results in a sensibility to shallower (for surface dynamic topography and geoid) or deeper (for bottom topography) structures and also in a smaller amplitude. It is also interesting to note that the effect of the strong and continuous viscosity increase, mimicking a stagnant lid but with only radial viscosity variations (profile 1, flat response function for low degrees between $r = 1.8$ and 2 for topography, cf. Fig. 8, especially for low degrees) is also observed for profile 2 (Fig. 9) where the viscosity jump across the ‘lid’ is much smaller and discontinuous (30). Finally, the results indicate how the response functions reflect the radial derivative of the viscosity profile (profile 1 is smooth, profile 2 is discontinuous).

Concerning the differences between the two methods (‘error’ variable in Figs 7–9), the spectral method is considered to be the reference due to its better precision, ‘error’ thus mostly refer to the grid-based flow solver. In the isoviscous case (cf. Fig. 7), both results are in very good agreement. The maximum discrepancy is always observed for the largest degree (here $\ell = 15$). For dynamic topographies, it is located near the two interfaces and reaches a value of 1 per cent. These are responsible for the surface error on geoid (also 1 per cent of the peak value located...
Figure 7. Response functions obtained by the spectral method (solid line) and by the ĖDIPUS solver (open circles) and the associated error. On the left panel, dimensionless geoid, on the right panel, dimensionless dynamic topographies (blue: ‘CMB’ topography, red: surface topography). The dashed line with the same colour indicates the ‘error’ (i.e. the absolute difference between two values at a given radius). Note that the scale for this difference is 100 times larger than the one corresponding to the related variable in order to represent values of about a percent of the maximum value. Four spherical harmonic degrees are presented: \(l = 2, 5, 10, 15 \). In this first case, the material is isoviscous.

at \(r \sim 1.9 \)). These errors are likely to be caused by the discrete treatment of boundary conditions. In the case of profile 1 (Fig. 8), the shape of the error profiles is affected by the viscosity profile. This is also obvious in the case of step-like profile 2 (Fig. 9): the two discontinuities in the viscosity profile induce discrepancies between the two results above and below. This leads to 1–1.5 per cent errors even for lower degrees (e.g. for \(l = 5 \) between \(r = 1.4 \) and 1.6). Finally, we consider that the very good agreement between these results proves that ĖDIPUS provides reliable estimations of geoid and topography for planetary applications where degrees \(l \leq 15 \) will be considered. It should be noted that for the present size of the grid mesh, the results deteriorate strongly when degrees \(l \geq 20 \) are studied. Hence, a refinement of the grid mesh (at least in the azimuthal direction, \(6 \times 64 \times 128 \times 128 \) cells) is needed to reduce the discrepancy to acceptable values (less than 5 per cent for geoid). Eq. (33) indicates that, in the case where each block of the cubed sphere is associated to a \(N^2 \) mesh (with \(N = N^\xi = N^\eta \)), degrees up to \(2N – 1 \) could be considered (\(\ell_{\text{max}} = 127 \) if \(N = 64 \), and only \(N = 11 \) cells would be needed for \(\ell_{\text{max}} = 20 \ldots \)). This relationship clearly overestimates the maximum reliable degree for a given ‘grid size’ in the angular directions. Instead, our tests indicate that approximately eight times more grid cells are needed. An empirical rule would thus be that each block of the cubed sphere is divided in \(N = 4 \times \ell_{\text{max}} \) cells in each angular direction if spherical harmonics up to degree \(\ell_{\text{max}} \) are to be considered with confidence. A more rigorous approach, however, is
that each time higher degrees of topography and geoid are computed, a short benchmark procedure on response functions up to this degree be made for the mesh.

5.2 Thermal convection

Benchmarks for thermal convection have already been produced in the earlier publication (Choblet 2005) including tests on the onset of convection for spherical harmonics perturbations and tests on the value of the Nusselt number for stationary convection at relatively low Rayleigh numbers. However, since we now use a different numerical method to simulate advection that is proven to be more accurate (e.g. it produces less numerical diffusion, cf. Section 3.3), we present four results referenced in Table 4. Table 5 displays a new benchmark based on recent compilations (Yoshida & Kageyama 2004; Stemmer et al. 2006): two cases (numbered 1 and 2) have been isolated among the list, one corresponding to a tetrahedral solution, one to a cubic one, these two steady platforms being identified by linear stability analysis and obtained by several numerical models for relatively low values of the Rayleigh number.

We used a $6 \times 32 \times 32 \times 32$ cells grid mesh to perform both calculations. This mesh provides a satisfactory resolution for these cases with small Rayleigh numbers. Mechanical boundary conditions are stress-free on both spherical surfaces bounding the shell. The results show a good agreement with solutions obtained earlier with various numerical methods. A comforting observation is also the small difference between bottom and surfaces heat fluxes that indicates that the scheme is indeed globally conservative. The techniques used in the various
Table 4. List of the presented calculations with the values of the dimensionless parameters: ratio between the two radii bounding the spherical shell (f), surface Rayleigh number (Ra), exponential viscosity parameter (γ), dimensionless volumetric heating (h), mechanical boundary condition on the two spherical interfaces. The comment in the last column refers to the shape of the initial temperature perturbation for the two first cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>f</th>
<th>Ra</th>
<th>γ</th>
<th>h</th>
<th>Boundary condition</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55</td>
<td>7×10^3</td>
<td>0</td>
<td>0</td>
<td>Stress-free</td>
<td>Tetrahedral</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>3.5×10^3</td>
<td>0</td>
<td>0</td>
<td>Stress-free</td>
<td>Cubic</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1.4×10^6</td>
<td>0</td>
<td>0</td>
<td>No-slip</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>10^4</td>
<td>15</td>
<td>10</td>
<td>No-slip</td>
<td>–</td>
</tr>
</tbody>
</table>

programs compared here seems to have a small effect on global scalar values such as the Nusselt number. Part of the scattering might be attributable to the variations of the mesh resolution (a precise analysis is proposed by Stemmer et al. 2006); the specific treatment of numerical diffusion proposed in this study (cf. Section 3.3) is not observable. Global averages are probably not a sufficient criterion for a very precise benchmark. In addition, the use of higher order accuracy schemes in time would also produce variations among the various programs if a time-dependent case were studied (our explicit method is only order 1 in time). A precise benchmark in the future should also include such a test.
curvature. If both boundary layers had a similar thickness, the temperature difference across the hot one would be approximately 1

(\text{with therefore, a relatively smooth aspect}). A classical result is the asymmetry between the cold and hot boundary layers due to their different

Table 5. Benchmark tests for an isoviscous fluid. For the two runs, \(f = 0.55 \) (close to the Earth’s mantle curvature). Case 1: \(Ra = 7 \times 10^3 \), tetrahedral solution - Case 2: \(Ra = 3.5 \times 10^3 \), cubic solution. The code in the first column refers to the models used for comparison: B89 (Bercovici et al. 1989), H96 (Harder & Christensen 1996), R96 (Ratcliff et al. 1996), Z00 (Zhong et al. 2000), Y04 (Yoshida & Kageyama 2004), S06 (Stemmer et al. 2006), C06 is the present study. The number of cells in the radial direction (\(N^r \)) as well as the approximate mesh size used to produce the results appear in column 2. Surface (\(\text{Nu}_{\text{top}} \)) and bottom (\(\text{Nu}_{\text{bot}} \)) Nusselt numbers are indicated as well as the \(\text{rms} \) of the velocity field (\(V_{\text{rms}} \)).

<table>
<thead>
<tr>
<th>Reference</th>
<th>(N^r) (Mesh size)</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B89</td>
<td>12 ((2 \times 10^3))</td>
<td>3.4657</td>
<td>3.5293</td>
</tr>
<tr>
<td>H96</td>
<td>120 ((6 \times 10^3))</td>
<td>3.4957</td>
<td>–</td>
</tr>
<tr>
<td>R96</td>
<td>40 ((2 \times 10^3))</td>
<td>3.4423</td>
<td>–</td>
</tr>
<tr>
<td>Z00</td>
<td>24 ((2 \times 10^3))</td>
<td>3.519</td>
<td>3.472</td>
</tr>
<tr>
<td>Y04</td>
<td>102 ((2 \times 10^3))</td>
<td>3.443</td>
<td>–</td>
</tr>
<tr>
<td>S06</td>
<td>48 ((7 \times 10^3))</td>
<td>3.4864</td>
<td>3.4864</td>
</tr>
<tr>
<td>C06</td>
<td>32 ((2 \times 10^3))</td>
<td>3.4814</td>
<td>3.4717</td>
</tr>
</tbody>
</table>

\(V_{\text{rms}} \) = – implies the velocity field is frozen (or not computed).

We further propose two time-dependent results for thermal convection. One (Case 3) is obtained for an isoviscous fluid with purely basal heating, the other (Case 4) corresponds to a stagnant-lid regime and includes approximately 20 per cent volumetric heating. Both calculations were performed with no-slip radial boundaries and both have reached a statistical steady state on a \(6 \times 124 \times 64 \times 64 \) cells grid mesh. A typical duration for such a run is about a 100 hr on 48 (rather slow, 500 MHz) SGI processors R14000. Time-averaged profiles are presented in Fig. 10 (with therefore, a relatively smooth aspect). A classical result is the asymmetry between the cold and hot boundary layers due to their different curvature. If both boundary layers had a similar thickness, the temperature difference across the hot one would be approximately \(1/(1 + f^2) \) and \(f^2/(1 + f^2) \) across the cold one. The temperature of the well-mixed interior is thus linked to the ratio between the areas of both surfaces (in this case, this temperature is indeed close to 1/5, \(\text{cf.} \) Fig. 10 and Table 6). Both the introduction of temperature-dependent viscosity and the addition of volumetric heating naturally increases this value (\(\text{cf.} \) Fig. 10). The minimum and maximum temperature profiles also indicate that in both cases, the average is closer to the minimum value than to the maximum. In Case 3, the whole layer participates to convective motion; the difference between the minimum temperature and the average value at a given depth thus simply reflects the temperature difference across the cold boundary layer; the difference between the maximum and the average reflects the difference within the hot boundary layer. Since, for geometry reasons indicated above, the boundary layer temperature difference is \(f^{-2} \) larger across the hot layer than across the cold one, the average radial profile is closer to the minimum profile. In Case 4, though the temperature difference across the cold boundary layer is larger than across the hot one, the effective cold sublayer that participates to convection is only a fraction of it (\(\text{cf} \) Table 6). Assuming a simple force balance where the downwelling velocity is mostly due to the buoyancy of the unstable part of the cold boundary layer and the upwelling velocity to the buoyancy of the hot boundary layer, we expect that in both cases, the downwelling velocity is smaller than the upwelling velocity; this is what is observed. The asymmetry is even more pronounced when temperature-dependence of viscosity is included.

\[\text{Nu}_{\text{top}} = \frac{q_d}{\kappa V^2} \text{Nu}_{\text{bot}} = \frac{q_d}{\kappa V^2} \]
This reflects the fact that, in a spherical shell, viscosity variations may be significant in the hot boundary layer while they are smaller than one order of magnitude in the Cartesian case. In addition, in the stagnant lid case, radial velocities vanish at the bottom of the lid.

Concerning radial heat fluxes, though the classical feature of two radii close to the bottom and top of the domain delimiting zones where radial diffusion exceeds radial advection (hot and cold boundary layers) from a zone where the contrary is true (well-mixed convecting core), it is interesting to note that the conservation of the power from one radius to the other implies that the sum of the advective and convective part of the radial flux diminishes as the spherical area increases (i.e. as the square of the radius) when no volumetric heating is taken into account (explaining the parabolic shape of the advective profile, Fig. 10). When a constant volumetric heating rate is introduced, the global power is proportional to $P(r) = r^2 \left[q_{ad}(r) + q_{di}(r)\right] - \left[r^3 - r_0^3\right] h / 3$. The conservation of this quantity throughout the spherical shell gives a significant amount of information on the state of the flow in terms of distance from steady-state and possible resolution problems. In both Cases presented in Fig. 10, a statistical steady state is clearly reached [$P(r) = \text{constant}$ independent of r]. However, a departure from the nominal value can be observed at depths corresponding to the unstable boundary layers: this is more obvious for Case 4, especially for the hot bottom boundary layer (the deviation is larger than 20 per cent). This feature could be related to time period for the averaging that is too small. Here, it indicates that the convective regime would imply a more accurate grid mesh. It is interesting to note that though the temperature difference across the hot boundary layer is smaller for Case 4 than for Case 3, the resolution limit does not seem to be reached for Case 3. This is probably due to the fact that the gradient is about 20 per cent larger in Case 4 (see the bottom Nusselt number values in Table 6).

5.3 Coupled computation: internal dynamics, topography and geoid

Dynamic topography and geoid have been computed for the four thermal convection results presented above (Table 4). We have used the following values for the dimensionless parameters: $E = 5 \times 10^{-2}$ and $G^* = 2 \times 10^{-2}$. It should be noted that this choice, while it is based on plausible orders of magnitude for a generic planetary mantle (cf. Table 7), remains nevertheless rather arbitrary. Note that both the amplitude of the presented geoid and the relative influence of (i) topographies at the interfaces and (ii) density anomalies throughout the spherical shell, are affected by this choice. Finally, it should be noted that since the dimensionless value of geoid N implies the use of dimensionless parameter G^*, an alternative variable may be the dimensionless potential at the surface of the shell $U(r)$ that does not require the introduction of further dimensionless quantities. Indeed, N is simply proportional to $U(r)$. However, if dynamic topographies are to be computed from numerical simulations of thermal convection, E needs to be introduced.

Figs 11–14 display the results of the computation for Cases 1–4, respectively. According to Section 4.2, the data needed to produce these maps are the radial stress σ_r on the interfaces and the 3-D temperature field T. These gridded data sets (with variable areas) are first transposed into the spherical harmonics basis (coefficients are computed to a maximum degree $\ell = 30$). Dimensionless topography and geoid are then computed according to the procedure described in 4.2 and finally plotted on a latitude–longitude grid. Thus, degrees shorter than $\ell_{\text{max}} = 30$ do not appear on topography and geoid fields in Figs 11–14.

A first result is that both the tetrahedral and cubic Cases 1 and 2 (Figs 11 and 12, respectively) lead to topography and geoid variations that still exhibit, among others, the strong spherical harmonic coefficients inherited from the initial perturbation: $(\ell = 3, m = 2)$ for tetrahedral Case 1, $(\ell = 4, m = 0)$ and $(\ell = 4, m = 4)$ for cubic Case 2. The amplitudes are rather large (on the order of a few percents of the planet’s radius for surface dynamic topography) and indicate that these cases are probably not relevant for a comparison in the planetary context.

Time-dependent Cases 3 and 4 lead to shorter wavelengths variations of both surface dynamic topography and geoid. Again, these features directly reflect the wavelength observed for thermal convection in the spherical shell: the power spectrum associated to the results in Case 3 peaks for degree $(\ell = 8)$ while the maximum is obtained for higher degrees in Case 4 $(\ell = 12$ and larger, the uncertainty associated to degrees higher than 15 in the spectral evaluation of geoid and topography being non-negligible). This result is mostly induced by value of the internal Rayleigh number R_a, (i.e. obtained for a viscosity value characteristic of the convective sublayer): $R_a = Ra = 1.4 \times 10^6$ for isoviscous Case 3 while $R_a \sim 8 \times 10^7$ for Case 4. The major effect of the viscous conductive lid in Case 4, compared to the isoviscous Case 3, is the increase of the amplitude of the topography while the geoid has the same order of magnitude in both cases. It is important to note that, as demonstrated by Solomatov (2004), an Arrhenius-type viscosity law would provide a larger deviatoric stress field near the surface of the stagnant lid. Its influence on dynamic topography is probably only weak since topography is mainly maintained by variations in pressure, which mostly reflects the density distribution. The effect on geoid might be worth examining.

Table 6. Global scalar values characteristic of Cases 3 and 4. These values are time-averages corresponding to the profiles displayed in Fig. 10. Nusselt numbers, boundary layers (and stagnant lid) thicknesses, temperature differences across the boundary layers (and the stagnant lid). Boundary layer thicknesses refer to the radius where radial advection and radial diffusion are equal. The stagnant lid thickness is defined with the radius of the intersection between the tangent to the advective profile (cf. Fig. 10) through its inflexion point and the zero-flux axis (cf. Davaille & Jaupart 1993).

<table>
<thead>
<tr>
<th>Case</th>
<th>Nusselt number</th>
<th>Thickness</th>
<th>Temperature difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>top</td>
<td>bot</td>
<td>lid</td>
</tr>
<tr>
<td>3</td>
<td>7.910</td>
<td>7.948</td>
<td>2.90 × 10^{-2}</td>
</tr>
<tr>
<td>4</td>
<td>12.88</td>
<td>9.980</td>
<td>1.63 × 10^{-2}</td>
</tr>
</tbody>
</table>
Table 7. Acceptable range for dimensionless parameters E and G^* (as well as internal Rayleigh number Rai and dimensionless radius of curvature f of the shell as an indication). The two end-members values for E (from Mercury, or a small silicate mantle, to Venus or a large silicate mantle) are not associated to the same objects than for G^* (from Europa, or a thin icy crust, to Venus, or a large silicate mantle). Note that most of the crude estimates within this table can be debated (especially the values of d, ΔT and μ_0).

Gravitational constant $G = 6.67 \times 10^{-11}$ m3 s$^{-2}$ kg$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>Europa</th>
<th>Ganymede</th>
<th>Mercury</th>
<th>Venus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0 (kg m$^{-3}$)</td>
<td>1000</td>
<td>1000</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>g (m s$^{-2}$)</td>
<td>1.5</td>
<td>1.5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>d (m)</td>
<td>3×10^4</td>
<td>10^5</td>
<td>5×10^5</td>
<td>3×10^6</td>
</tr>
<tr>
<td>r_t (m)</td>
<td>1.5×10^6</td>
<td>2.5×10^6</td>
<td>1.5×10^6</td>
<td>6×10^6</td>
</tr>
<tr>
<td>κ (m2 s$^{-1}$)</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>μ_0 (Pa s)</td>
<td>10^{14}</td>
<td>10^{15}</td>
<td>10^{21}</td>
<td>10^{21}</td>
</tr>
<tr>
<td>α (K$^{-1}$)</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>ΔT (K)</td>
<td>150</td>
<td>150</td>
<td>500</td>
<td>3000</td>
</tr>
<tr>
<td>E</td>
<td>$\sim 10^{-2}$</td>
<td>$\sim 10^{-2}$</td>
<td>$\sim 5 \times 10^{-3}$</td>
<td>$\sim 3 \times 10^{-2}$</td>
</tr>
<tr>
<td>G^*</td>
<td>$\sim 10^{-3}$</td>
<td>$\sim 4 \times 10^{-3}$</td>
<td>$\sim 4 \times 10^{-2}$</td>
<td>$\sim 7 \times 10^{-2}$</td>
</tr>
<tr>
<td>Rai</td>
<td>6×10^6</td>
<td>2×10^7</td>
<td>7×10^3</td>
<td>3×10^7</td>
</tr>
<tr>
<td>f</td>
<td>0.98</td>
<td>0.96</td>
<td>0.66</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 11. Surface dynamic topography (T) and geoid (N) obtained for stationary temperature and flow fields corresponding to Case 1.

Figure 12. Surface dynamic topography (T) and geoid (N) obtained for stationary temperature and flow fields corresponding to Case 2.
Figure 13. Surface dynamic topography (T) and geoid (N) obtained for instantaneous temperature and flow fields corresponding to Case 3.

Figure 14. Surface dynamic topography (T) and geoid (N) obtained for instantaneous temperature and flow fields corresponding to Case 4.

6 CONCLUSION

The variations of geoid and surface dynamic topography contain important information about internal dynamic processes occurring within silicate mantles of terrestrial planets or surface icy layers of the large satellites of giant planets. Though, ultimately, a precise estimate of the internal structure will also require ground-based geophysical experiments (see, e.g. Verhoeven et al. 2005), observations such as the geoid and topography can be obtained from experiments in an orbiter mission.

In this study, we propose a dimensionless framework for this coupled problem: internal dynamics and the resulting geoid and dynamic topography. The characteristic scales are inherited from infinite Prandtl number thermal convection, with the four dimensionless parameters Ra, f, γ and h. Two additional dimensionless parameters are introduced in order to produce dimensionless values for geoid and topography: E and G^* (Table 7 indicates plausible ranges for this two terms, much smaller than the one associated to the Rayleigh number). As well as the velocity scale based on thermal diffusion κ/d is not significant for velocities associated to natural thermal convection, the length scale based on the shell thickness is much larger than realistic values for N, t_s. Finally, a good alternative to dimensionless geoid may be the surface value of the dimensionless gravitational potential, $U(r_s)$.

In order to model internal dynamics, we propose an efficient numerical method based on the ‘cubed-sphere’ grid mesh where the spherical shell is decomposed on six non-conformal blocks. We present a high-resolution scheme (with a slope-limiter non-linear method) to treat the advection term in the energy equation as well as a benchmark of various schemes. The flow solver is already described for one of the blocks in (Choblet 2005). It is tested extensively against a very precise spectral method for flows with a radial-dependence of viscosity. The response functions for geoid and dynamic topographies indicate a very good agreement up to degree $\ell = 15$ for a $6 \times 64 \times 64 \times 64$ grid mesh in the flow solver (a correct description of higher degrees requires finer meshes). We believe that such an agreement is needed to apply thermal
convection results to the computation of geoid and topography for planetary applications. Since various new methods for thermal convection in a spherical shell now exist, a precise benchmark should include such a calculation of geoid and topography.

However, the physical model proposed here is still oversimplified. For example, the adjunction of an increase of viscosity with depth (due to pressure dependence and/or to a viscous stratification within the mantle) has been shown to reduce significantly the characteristic degree of spherical convection (Bunge 1997; Roberts 2006; Yoshida & Kageyama 2006). Similarly, compositional effects on density and viscosity would lead to different structures and thus different results for geoid and topography. More, the rheological description of the stagnant lid is clearly the weakest point of many numerical codes used to model the flow in planetary interiors and GEDIUS is not an exception. The effect of a more realistic Arrhenius-type viscosity law has already been discussed. The simple introduction of an elasticity component (as in Zhong 2002, for example) would also modify significantly the results: in our viscous models, a surface dynamic topography is obtained even for a very viscous lid while an elastic behaviour would largely reduce the viscous component. Indeed, the observed geoid and topography are superpositions of various contributions among which the dynamic one may be the least important (e.g. Le Stunff & Ricard 1995). A large portion of the topographic load may be maintained by isostasy and/or elastic flexure, depending on the wavelength of the topographic features, the thickness of the lithosphere and the radius of the body (e.g. Turcotte et al. 1981; Pauer et al. 2006). A careful analysis of the data is thus necessary for a correct interpretation of the geoid and topography in terms of viscous flow models.

For these reasons, a direct comparison of the topography and geoid obtained from a convection simulation with planetary observables is likely to be misleading in many cases. An intermediate approach may include the computation of dimensionless geoid and topography for a large range of model parameters and for various physical models of the internal dynamics. Next steps can then be the a posteriori correction of the predicted geoids and topographies for lithospheric effects (e.g. by including an elastic layer on the top or considering a membrane correction for a stiff uppermost layer) and their comparison with observed data, at least partly reduced to isostatic effects or at wavelengths where the dynamic contribution is presumably dominant.

ACKNOWLEDGMENTS

We thank S. Zhong and an anonymous reviewer for their comments. The work benefited from Charles University grant GAUK 280/2006/B-GEO/MFF as well as the research project MSM 0021620800 of the Ministry of Education in the Czech Republic and from the Programme National de Planétologie as well as ANR ETHER in France.

REFERENCES

APPENDIX A: DESCRIPTION OF THE ADVECTION SCHEMES

The motivation to introduce high resolution methods arise from the problem stated in ‘Godunov’s theorem’: There are no monotone, linear schemes for the linear advection problem of second or higher order of accuracy. When only linear schemes are considered, one is forced to choose between first order schemes that produce numerical diffusion or second order schemes that are not monotonic (i.e. produce spurious, non-physical oscillations). High resolution methods thus introduce a non-linear treatment of the advective flux term.

Neglecting for the moment the diffusive terms of right-hand side, the advective part of eq. (16) can be written as follows

\[T_t + \frac{1}{J} \left[(JT\nabla^* T)_r + (JT\nabla^* T)_\xi + (JT\nabla^* T)_\eta \right] = T_r + \nabla^* T_r + \nabla^* T_\xi + \nabla^* T_\eta = 0, \]

\[(A1) \]

where \(J = \frac{\partial (r,\xi,\eta)}{\partial (\xi,\eta)} \) is the Jacobian of the coordinate transformation from the Cartesian basis to the natural basis associated to the cubed sphere coordinates and contravariant velocity components \(\nabla^* \) refer to this natural basis (while \(\nabla \) refer to the physical basis, see Choblet (2005) for further details). Integrating eq. (A1) over the volume \(V \) of cell \(\mathbb{C} \) and during the time step \(\Delta t \), one obtains the conservation form

\[\frac{1}{V} (T^{n+1} - T^n) + \frac{1}{J V} \left[F^r(r^+) - F^r(r^-) + F^\xi(\xi^+) - F^\xi(\xi^-) + F^\eta(\eta^+) - F^\eta(\eta^-) \right] = 0 \]

\[(A2) \]

with

\[T^n = T(r, \xi, \eta, t^n) = \int_C T(r', \xi', \eta', t^n) dV, \]

\[(A3) \]

and

\[F^l(r, \xi, \eta, t) = \int_t^{t+\Delta t} \int_{r^l} J(r', \xi', \eta', t') \frac{\partial}{\partial t} T(r', \xi', \eta', t') dS' dt, \]

\[(A4) \]
where index \(l \) refer to the direction \((r, \xi, \eta)\) so that \(S' \) is the surface of the cell \(C \) corresponding to \(l = \) constant (unless explicitly written, the coordinates are \(r, \xi, \eta, t \)).

Let us now consider the discrete problem. The staggered grid mesh approach is used so that velocities \(\vec{V}' \) are localized on cell boundaries (corresponding to \(r_0^l, r_1^l, \xi_j^l, \xi_{-j}^l, \eta_i^l, \eta_{-i}^l \)) and scalar quantities in the centre (corresponding to \(r_i, \xi_j, \eta_k \)) (see Choblet 2005, for further details). The Godunov approach (Godunov 1959) then consists in the introduction of a function constant in the volume of cell \(C \) but varying through time: \(\Upsilon^n_{ijk}(t) \). We thus obtain for the discrete flux on the cell boundaries

\[
F^l = S' J \int_{t}^{t + \Delta t} \Upsilon(t') dt
\]

(here, and in the following lines, unless explicitly written, the indexes are \(i,j,k,n \)). The first order accurate upwind scheme corresponds then to the choice of a constant value for \(\Upsilon \) corresponding either to the ’left’ or the ’right’ value \(T \), depending on the sign of \(\vec{V}' \), for example,

\[
F^l = \begin{cases}
\Delta l^l \Delta t \Delta l J \vec{V}' T & \text{if } \vec{V}' > 0, \\
\Delta l^l \Delta t \Delta l J \vec{V}' T_{i+1,j} & \text{if } \vec{V}' < 0.
\end{cases}
\]

(A6)

with \(\Delta l^l, \Delta l^r \) the dimensions of the cell. A better (second order) precision can be obtained by adopting a (tri)linear function for \(\Upsilon \), introducing slopes \(\sigma^l, \sigma^r, \sigma^s \), constant in the time interval \([t, t + \Delta t] \)

\[
\Upsilon(r, \xi, \eta, t) = T_{ijk} + \sigma^l (r - r_i) + \sigma^r (\xi - \xi_j) + \sigma^s (\eta - \eta_k).
\]

(A7)

Note that the case \(\sigma^* = 0 \) provides again the Godunov-upwind method from a different point of view. Classical choices for the slope including a centred (e.g. \(\sigma^* = (T_{i+1,j} - T_{i-1,j})/2 \Delta r \), Fromm), upwind (e.g. \(\sigma^* = (T_{i+1,j} - T_{i,j})/\Delta r \), Beam-Warming) or downwind (e.g. \(\sigma^* = (T_{i+1,j} - T_{i,j})/\Delta r \), Lax-Wendroff) however may induce oscillations in regions of large \(T \) gradients: in this context, a way to avoid these oscillations is to limit the slope’s values (slope- or flux-limiter methods) thus inducing the non-linear aspect of the method. Van Leer’s solution (van Leer 1979) is then to consider the monotonized central-difference limiter (or MC-limiter) defined as follows, for example in the \(r \)-direction:

\[
\sigma^* = \minmod \left[\left(\frac{T_{i+1,j} - T_{i-1,j}}{2 \Delta r} \right), \left(\frac{2 T_{i+1,j} - T_{i,j}}{\Delta r} \right), \left(\frac{2 T_{i,j} - T_{i-1,j}}{\Delta r} \right) \right].
\]

(A8)

with the \(\minmod \) function:

\[
\minmod(a, b, c) = \begin{cases}
\text{sign}(a) \min(a, b, c) & \text{if } a \leq b \leq c \text{ or } a \geq b \geq c, \\
0 & \text{otherwise}.
\end{cases}
\]

(A9)

This slope is termed slope 1 in our comparative study. In smooth regions, this reduces to the centred (Fromm) slope and gives a reasonably sharp resolution in large gradients regions by comparing it with twice the one-sided slopes. This is the reason why the use of non-linear limiters does not only make sense in the context of compressible flows where it was first introduced, but also for incompressible flows where large gradients occur. Another solution is to compute the slope as a geometrical average:

\[
\sigma^* = \begin{cases}
\frac{2 (T_{i+1,j} - T_{i,j})}{(T_{i+1,j} - T_{i-1,j})} & \text{if } T_{i-1,j} \leq T_i \leq T_{i+1,j} \text{ or } T_{i+1,j} \geq T_i \geq T_{i-1,j}, \\
0 & \text{otherwise}.
\end{cases}
\]

(A10)

The Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) scheme corrects the classical upwind procedure by reapplying it with an antidiffusive velocity field. The latter is derived from the truncation error analysis of the upwind scheme assuming a uniform flow. It is clear that this procedure can then be reapplied so that a good precision can be reached, iteratively (for a detailed description, see Smolarkiewicz 1984). This method has been used successfully to model mantle dynamics in the Cartesian context. However, the corrective steps are quite time-consuming in the cubed-sphere coordinate system. Since a rigorous truncation error analysis in a multidimensional complex flow context is not possible, we do not study the precise effect of both high-resolution methods introduced here (van Leer slope limiter, MPDATA) on the physics of the flow in terms of oscillations. The single effect on numerical diffusion is treated for a simple solid rotation flow.

APPENDIX B: COMMUNICATION BETWEEN BLOCKS

Within each of the six blocks, in the framework of parallel computation, communication between processors is identical to a classical domain decomposition in a Cartesian parallelepipedic volume (cf. Choblet 2005). The main object here is thus to describe communication between the six blocks. As can be seen on Fig. 3, the ‘new’ orientation of the coordinate system induces only two configurations: either the coordinates ‘match’ on two adjacent blocks (one of the coordinate is the same modulo \(\pi/2 \), e.g. \(\xi \) for blocks 0 and 1 or \(\eta \) for blocks 1 and 4) or they are reversed (\(\xi \) becomes \(\eta \), e.g. from 1 to 2, or vice versa, e.g. from 3 to 0).

Three kinds of variables may then be considered, due to the discretization:

(i) scalar variables and velocity component \(\vec{V}' \), though they are ‘located’ at different depths in the staggered grid mesh approach, are however similar in terms of angular coordinates \(\xi \) and \(\eta \). The buffer planes outside the block, at \(-\pi/4 - \Delta/2\) and \(\pi/4 + \Delta/2\), are filled using the values from inside the adjacent blocks (e.g. located, respectively at \(-\pi/4 + \Delta/2\) and \(\pi/4 - \Delta/2\) in the case of a simple configuration), a simple 1-D interpolation being necessary since only one of the coordinates is different between the two blocks (e.g. \(\eta_0 \) and \(\eta_1 \) are different).
(ii) when dealing with *azimuthal* vector components, a 2-D transformation is needed due to non-orthogonality: if we consider the example of blocks 0 and 1, corresponding to a *simple* configuration,

\[
\begin{align*}
V_i^\xi &= \frac{\sqrt{X_0^2 + Y_0^2}}{D_0} V_0^\xi, \\
V_i^\eta &= V_0^\eta - \frac{C_0 Y_0}{D_0 X_0} V_0^\xi
\end{align*}
\]

(B1)

(\text{these relations are similar in the case of an *inverse* configuration}: in the case of normal velocity component (here V_ξ), the discrete buffer planes located at $-\pi/4 - \Delta$ and $\pi/4$ are filled so that only the discrete values between $-\pi/4$ and $\pi/4 - \Delta$ are computed; again a simple 1-D interpolation is performed, with an additional scaling factor corresponding to coefficient $\sqrt{1 + (Y_0^2)/(X_0^2)}/D_0$ in eq. (B1).

(iii) in the case of a velocity component that is tangent to the boundary (V_η for the boundary between 0 and 1), as in the scalar case, the buffer planes outside the block, at $-\pi/4 - \Delta/2$ and $\pi/4 + \Delta/2$, are filled using the values of the corresponding tangent velocity from within the adjacent blocks (at $-\pi/4 + \Delta/2$ and $\pi/4 - \Delta/2$) and of the normal velocity at $-\pi/4$ and $\pi/4 - \Delta$.

It should be noted that in spite of non-orthogonality, these interpolation and transformation procedures are very simple compared to the one induced by most multiblocks algorithms.