Formation and degradation of chaotic terrain in the Galaxias regions of Mars; implications for near-surface storage of ice

Research areas:
Landscape evolution, Mars, Chaotic terrain, Devolatization, Groundwater, Ice loss
Galaxias Chaos is a region of low plateaus separated by narrow fractures – a chaotic terrain. Galaxias Mensae and Galaxias Colles are characterised by mesa and knobby terrains of individual landforms, or small assemblages, separated by plains. Galaxias Chaos has been attributed to ground disturbance due to sublimation in shallow subsurface ice-rich deposits, Galaxias Mensae and Galaxias Colles to sublimation and degradation of icy surface materials, without production of chaotic terrain. Liquid water has not been regarded as a product of the degradation of these icy terrains. This paper asks two research questions: (1) what was the total extent of the different modes of landscape degradation, especially chaotic terrain, involved in producing the present landscapes of Galaxias Chaos and Galaxias Mensae-Colles; (2) can the generation of liquid water as a product of landscape degradation be ruled-out? Using a morphological-statistical approach, including power spectrum analysis of relief, our observations and analyses show that present mesa-knobby terrains of Galaxias Mensae-Colles evolved from a landscape that had the same directional pattern and relief as presently found in Galaxias Chaos. This terrain extended across ∼440000 km2 but ∼22000 km3 (average thickness, 77 m) have been lost across ∼285000 km2. This represents a significant loss of ice-bearing deposits. Moreover, this surface degradation was spatially partitioned by landforms associated with elevated ground heating and the transmission of a fluid in the shallow subsurface towards a distal channel. In answer to research question 2, it cannot be determined definitively if the fluid involved was groundwater, generated by the thermal destabilisation of the icy deposits, or low viscosity lava. However, it is likely that the degradation of Galaxias Mensae-Colles was not a consequence of sublimation alone. These findings underscore the significance of cryo-volcanic interactions in the cycling of water between the Martian surface and the atmosphere.