Research areas:
  • G. Tinetti
  • J. P. Beaulieu
  • T. Henning
  • M. Meyer
  • G. Micela
  • I. Ribas
  • D. Stam
  • M. Swain
  • O. Krause
  • M. Ollivier
  • E. Pace
  • B. Swinyard
  • A. Aylward
  • R. van Boekel
  • A. Coradini
  • T. Encrenaz
  • I. Snellen
  • M. R. Zapatero-Osorio
  • J. Bouwman
  • J. Y-K. Cho
  • V. Coude du Foresto
  • T. Guillot
  • M. Lopez-Morales
  • I. Mueller-Wodarg
  • E. Palle
  • F. Selsis
  • A. Sozzetti
  • P. A. R. Ade
  • N. Achilleos
  • A. Adriani
  • C. B. Agnor
  • C. Afonso
  • C. Allende Prieto
  • G. Bakos
  • R. J. Barber
  • M. Barlow
  • V. Batista
  • P. Bernath
  • B. Bezard
  • P. Borde
  • L. R. Brown
  • A. Cassan
  • C. Cavarroc
  • A. Ciaravella
  • C. Cockell
  • A. Coustenis
  • C. Danielski
  • L. Decin
  • R. De Kok
  • O. Demangeon
  • P. Deroo
  • P. Doel
  • P. Drossart
  • L. N. Fletcher
  • M. Focardi
  • F. Forget
  • S. Fossey
  • P. Fouque
  • J. Frith
  • M. Galand
  • P. Gaulme
  • J. I. Gonzalez Hernandez
  • Olivier Grasset
  • D. Grassi
  • J. L. Grenfell
  • M. J. Griffin
  • C. A. Griffith
  • U. Groezinger
  • M. Guedel
  • P. Guio
  • O. Hainaut
  • R. Hargreaves
  • P. H. Hauschildt
  • K. Heng
  • D. Heyrovsky
  • R. Hueso
  • P. Irwin
  • L. Kaltenegger
  • P. Kervella
  • D. Kipping
  • T. T. Koskinen
  • G. Kovacs
  • A. La Barbera
  • H. Lammer
  • E. Lellouch
  • G. Leto
  • M. A. Lopez Valverde
  • M. Lopez-Puertas
  • C. Lovis
  • A. Maggio
  • J. P. Maillard
  • J. Maldonado Prado
  • J. B. Marquette
  • F. J. Martin-Torres
  • P. Maxted
  • S. Miller
  • S. Molinari
  • D. Montes
  • A. Moro-Martin
  • J. I. Moses
  • O. Mousis
  • N. Nguyen Tuong
  • R. Nelson
  • G. S. Orton
  • E. Pantin
  • E. Pascale
  • S. Pezzuto
  • D. Pinfield
  • E. Poretti
  • R. Prinja
  • L. Prisinzano
  • J. M. Rees
  • A. Reiners
  • B. Samuel
  • A. Sanchez-Lavega
  • J. Sanz Forcada
  • D. Sasselov
  • G. Savini
  • B. Sicardy
  • A. Smith
  • L. Stixrude
  • J. Tennyson
  • G. Strazzulla
  • M. Tessenyi
  • G. Vasisht
  • S. Vinatier
  • S. Viti
  • I. Waldmann
  • G. J. White
  • T. Widemann
  • R. Wordsworth
  • R. Yelle
  • Y. Yung
  • S. N. Yurchenko
2, SI
A dedicated mission to investigate exoplanetary atmospheres represents a
major milestone in our quest to understand our place in the universe by
placing our Solar System in context and by addressing the suitability of
planets for the presence of life. EChO-the Exoplanet Characterisation
Observatory-is a mission concept specifically geared for this purpose.
EChO will provide simultaneous, multi-wavelength spectroscopic
observations on a stable platform that will allow very long exposures.
The use of passive cooling, few moving parts and well established
technology gives a low-risk and potentially long-lived mission. EChO
will build on observations by Hubble, Spitzer and ground-based
telescopes, which discovered the first molecules and atoms in
exoplanetary atmospheres. However, EChO's configuration and
specifications are designed to study a number of systems in a consistent
manner that will eliminate the ambiguities affecting prior observations.
EChO will simultaneously observe a broad enough spectral region-from the
visible to the mid-infrared-to constrain from one single spectrum the
temperature structure of the atmosphere, the abundances of the major
carbon and oxygen bearing species, the expected photochemically-produced
species and magnetospheric signatures. The spectral range and resolution
are tailored to separate bands belonging to up to 30 molecules and
retrieve the composition and temperature structure of planetary
atmospheres. The target list for EChO includes planets ranging from
Jupiter-sized with equilibrium temperatures T (eq) up to 2,000 K, to
those of a few Earth masses, with T (eq) \textbackslash{}u223c 300 K.
The list will include planets with no Solar System analog, such as the
recently discovered planets GJ1214b, whose density lies between that of
terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with
day-side temperature close to 3,000 K. As the number of detected
exoplanets is growing rapidly each year, and the mass and radius of
those detected steadily decreases, the target list will be constantly
adjusted to include the most interesting systems. We have baselined a
dispersive spectrograph design covering continuously the 0.4-16 mu m
spectral range in 6 channels (1 in the visible, 5 in the InfraRed),
which allows the spectral resolution to be adapted from several tens to
several hundreds, depending on the target brightness. The instrument
will be mounted behind a 1.5 m class telescope, passively cooled to 50
K, with the instrument structure and optics passively cooled to
\textbackslash{}u223c45 K. EChO will be placed in a grand halo orbit
around L2. This orbit, in combination with an optimised thermal shield
design, provides a highly stable thermal environment and a high degree
of visibility of the sky to observe repeatedly several tens of targets
over the year. Both the baseline and alternative designs have been
evaluated and no critical items with Technology Readiness Level (TRL)
less than 4-5 have been identified. We have also undertaken a
first-order cost and development plan analysis and find that EChO is
easily compatible with the ESA M-class mission framework.