Jean-Pierre LORAND


Directeur de Recherche Classe Exceptionelle second échelon

LPG Nantes

Bât.4, bureau 112

Tél : +33 (0)251125463

Mél : jean-pierre.lorand@univ-nantes.fr

 

 

Education record

1978 Master degree in Earth Sciences. University of Nantes, France.

1979 Diploma of advanced studies in Petrology-Mineralogy (DEA).University "Pierre and Marie Curie", Paris.

1979-1983: PhD. National Museum of Natural History, Paris (MNHN)» and University «Pierre and Marie Curie», Paris.

1988 : Habilitation Thesis in Earth Science, University «Pierre and Marie Curie» Paris.

 

Scientific carreer

1982-1983 : Centre National d’Etude des Télécommunications (CNET-CNES) (Military Service, Issy-Les Moulineaux, Paris)

1983-1984 : Educator at the exhibition “Giant Crystals “ (MNHN, Paris)

1984 : Researcher at the Centre National de la Recherche Scientifique (MNHN).

1991-1992 : Sabathical year (Alexander Von Humboldt Fellowship), at the “Reinish Westphalische Technische Hochschüle”, Aachen (Germany).

1995 : Research Director (Senior Scientist) (MNHN)

2012 : Research Director (Senior Scientist) (LPG à Nantes)

 

Administrative charges

Past director (2001 to 2009) of the Mineralogical laboratory of the National Museum of Natural History (MNHN) and CNRS teams FRE 2460 (2002-2004) and UMR 7160 (2004-2008).

Referee for :

ANR, Aeres, Insu, Ministère de la Recherche, IFRTP (Terres Australes Francaises), FNRS, CEFIPRA

National Science Foundation (NSF) USA

Austrian Science Foundation (FWF)

Fond Canadien de la Recherche Scientifique (FONCAR).

Australian Research Council (ARC)

Fields of scientific expertise

- mineralogy of accessory metallic minerals (native metals, Cu-Fe-Ni sulfides/arsenides, Fe-Ti-Zr-Hf oxide minerals; spinels, platinum-group minerals) in planetary crusts and mantle

-petrology ofsamples from the earth mantle, ultrapotassic lavas, mafic layered intrusions, diamond-hosted mineral inclusions, martian meteorites,...

-geochemistry of precious metals (platinum-group elements) and related chalcophile and chalcogenide elements (S, Se, Te) in the silicate earth and other planetary environments.

Technical skills

- Sample handling and preparation for polished thin sections

- Field mapping and sampling

- Thermobarometry of mafic/ultramafic assemblages

- Reflected light and transmitted light optical microscopy

- Geochemistry of chalcophile (S, Se, Te, Bi, As, Cu) and highly siderophile elements (Re, Os, Ir, Ru, Rh, Pt, Pd, Au).

- Sulfur analysis by high-temperature iodo-titration

- Chemistry for chalcophile element extraction

- Chemistry for siderophile element extraction (NiS fire assay, high-T high-P acid dissolution)

- Scanning Electron Microscope operating in the Back Scaterred Mode and EDS imaging systems.

- Electron Microprobe and WDS imaging systems.

- Solution ICP-MS (external calibration standards, isotope dilution) - Laser Ablation (LA) ICP-MS

 

 identifications of rocks, météorites, mineral samples (on request)

 


From the very start, I have focussed my scientific career on the chalcogenides (S, Se, Te) and associated chalcophile and siderophile trace elements (namely, Cu, Au and Platinum-group elements (PGE). I have been studying these trace/ultratrace elements in rocks from the Earth mantle and in many other rocks derived from the upper mantle by partial melting and/or melt-rock reactions. My aim was to get reliable critical concentration ranges for these elements in the different mantle reservoirs (lithosphere and asthenosphere). I have coupled this bulk-rock approach to mineralogical investigation on their host minerals that appeared to be underscored in geochemical modelling. I have identified a series of regional variations for some elements (e.g. S, Cu, Pd and Pt) that were ascribed to lithospheric emplacement or post emplacement of host peridotites rather than to primordial, global-scale variations. From our knowledge of the fractionation of PGE at the microscopic scale, it seems very likely that the abundances (relative and absolute) of PGE measured in modern mantle rocks were overprinted by magmatic processes, especially melt removal and refertilization. The extent of reworking of PGE signatures by igneous processes within the Earth’s mantle mostly reflect their location in low-melting sulfides and other metallic trace phases of the S-As-Te system at the submicroscopic scale. I have shown that the identity of the minerals that govern the fractionation of PGE during partial melting and magmatic crystallization in the mantle is also fundamental for using PGE as geochemical tracers, especially for the interpretation of bulk-rock Re-Os systematics. Osmium alloys have been proved to be melting-resistant so they are able to propagate old melting ages through superimposed events of melting/metasomatism.

I have also released a series of papers on martian meteorites, with in view a better understanding of the cycle of reduced sulfur, both in basaltic rocks (and their cumulates) from the SNC family and regolith impact breccias that have sampled the early martian crust. The budget of reduced sulfur on Mars is distributed between two Fe-sulfides, magmatic metal-deficient pyrrhotite and pyrite. Pyrrhotite compositions faithfully record the large range of oxygen fugacity of martian basalts. We used LA-ICPMS analyses to document the strongly chalcophile behaviour of PGE in these rocks. Pyrite provides widespread evidence of hydrothermal alteration especially in samples coming from subsurface levels such as regolith impact breccias. These meteorites have lost all of their magmatic S budget because of repeated impacts and alteration under the high water activity of early Mars. In-situ analyses by LA-ICPMS suggested very low concentration levels for chalcophile metals that are usually mobilized by hydrothermal fluids (e.g. Cu, Pb, Zn, Ag). Our results may have wider implications for ore deposit formation in the martian crust.

 

Most recent publications in international journals (2012-2019)

 

Coggon, J.A., Nowell, G.M., Pearson, D.G., Lorand, J.-P., Obertür, Th. and Parman, S.W., 2012. Dating platinum mineralisation using the 190Pt-186Os system: examples from the Bushveld Complex. Chem. Geol. ( “11th International Platinum Symposium”). 302-303, 48-60.

Sautter, V, Toplis, M., Lorand, J.-P., Macri., M., 2012. Melt inclusion study in Nakhla, Governador Valadares, NWA 817 and NWA 998: inferences on most primitive nakhlite parent magma. Meteor. & Planet. Sci. Lett., 47, 330-344..

König, S., Luguet, A., Lorand, J.-P, Wombacher‚ F. Lissner, M., 2012 Selenium and tellurium systematics of the Earth’s mantle inferred from high precision analysis of orogenic harzburgites. Geochim. Cosmochim. Acta. 86, 354-366.

Delpech, G., Lorand, J.-P., Grégoire, M. O’Reilly, S.Y., 2012 In-situ geochemistry of chalcophile and highly siderophile elements in highly metasomatised Kerguelen mantle xenoliths (South Indian Ocean). Lithos. 154, 296-314 .

Lorand, J.-P., Barat, J.-A., Chevrier, V., Sautter, V. and Pont, S., 2012. Metal-saturated sulfide assemblages in chassignite NWA 2737; evidence for impact-related sulfur devolatilisation. Meteor. & Planet. Sci. Lett., 47, 1830-1841.

González-Jiménez, J.M., Marchesi, C., Griffin, W.L., Gutiérrez-Narbona, R., Lorand, J.-P., Garrido, C.J., O’Reilly, S.Y., Gervilla, F., Pearson, N.J., Hidas. K., 2013 Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif, southern Spain). review Lithos Spec. Vol. «Ore Deposits and the Role of the Lithospheric Mantle». 164-16 , 74-85.

Lorand, J.-P., Alard, O. and Luguet, A., 2013. Platinum-group elements systematics and petrogenetic processing of the continental upper mantle :a review. Invited Review Paper, Lithos Spec. Vol. «Ore Deposits and the Role of the Lithospheric Mantle», 164-167, 2-21.

Humayun, M., Nemchin, A., Zanda, B., Hewins, R.H.,Grange, M., Kennedy, M., Lorand, J.-P., Göpel, C., Pont, S., Fini, C., Deldicque, D., 2013. Origin and age of the earliest martian crust from meteorite NWA 7533. Nature 503, 513-516, (doi:10.1038/nature12764).

Marchesi, C., Garrido, C., Harvey, J., Hidas, C., Gonzales-Jimenez, J.M., Lorand, J.-P., Gervilla, F., 2013. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): influence of hydrothermal and magmatic processes. Contrib. Mineral. Petrol., 166, 1521-1538 .

König, S., Lorand, J.-P., Luguet, A., Pearson, D.G., 2014. Evidence for a non-primitive Earth’s mantle from selenium-tellurium geochemistry. Earth Planet. Sci. Lett., 385, 110-121

Hewins, R.J., Bourot-Denise, M., Zanda, B., Leroux, H., Barrat, J.-A., Humayun, M., Göpel, C., Greenwood, R.C., Franchi, I.A., Pont, S., Lorand, J.-P., F., Cournède, C., Gattaceca, J., Rochette, P., Kuga, M., Marrochi, Y., Marty, B., 2014. The Paris meteorite, the less altered CM chondrite so far. Geochim. Cosmochim. Acta 124, 190-222.

Ferraris, C., Parodi, G.C., Pont, S., Rondeau, B., Lorand, J.-P., 2014. Trinepheline and Fabrièsite, two new minerals from Tawmaw jadeiitites, Burma. Eur. J. Mineral. 2014, 26, 257–265.

Nemchin, A., Humayun, M., Whitehouse, M.J., Hewins, R.H., Lorand, J.-P., Kennedy, M., Grange, M., Zanda, B., Pont, S., Deldicque, D., 2014. Record of ancient Martian hydrosphere preserved in zircon from NWA 7533. Nature Geosciences,7, 638–643

Ferraris, C., Lorand, J.-P., 2015. Novodneprite (AuPb3), anyuiite Au(Pb, Sb)2 and gold nano-inclusions within plastically deformed mantle-derived olivine from the Lherz peridotite: a HRTEM-AEM-EELS study. Phys. & Chem. Mineral. 42, 143-150.

König, S., Lorand, J.-P., Moritz Lissner, Alessandro Bragagni, Luguet, A., (2015) Mineralogical control of selenium, ­tellurium and some highly siderophile elements in the Earth’s mantle: evidence from mineral separates of ultra-depleted mantle residues. Chem. Geol. 396, 16-24.

Baumgartner R.J. , Fiorentini M.L. , Baratoux D., Micklethwaite S. , Sener A.K. , Lorand J.-P. , T.C.McCuaig 2015 Magmatic controls on the genesis of NiCu±(PGE) sulphide mineralisation on Mars. Ore Geology Review 65, 400412.

Coggon, J.A., Luguet, A., Fonseca, R. O. C., Lorand, J.-P., Heuser, A., Appel, P.W.A., 2014 Understanding Re-Os systematics and model ages in ancient ultramafic bodies – A whole-rock and single grain study of Earth’s oldest known chromitites. Geochim. Cosmochim. Acta 167   Pages: 205-240.

König, S., Luguet, A., Lorand, J.-P., Lissner, M., Pearson D.G. 2015. Mineralogical significance of S-Se-Te signatures in the Earth’s mantle – Reply to the comment by Wang and Becker on “A non-primitive origin of near-chondritic S-Se-Te ratios in mantle peridotites: implications for the Earth’s late accretionary history” by König S. et al. [Earth Planet. Sci. Lett. 385 4 (2014) 110-121]. Earth Planet. Sci. Lett., 417, 167–169

Lorand, J.-P., Hewins, R. H. S. Pont, B. Zanda, M. Humayun, A. Nemchin and others, 2015. Nickeliferous pyrite tracks late hydrothermalism in martian regolith breccia NWA 7533. Met. & Planet. Sci. 50, 2099-2120.

Beck P., Pommerol, A, Remusat, L., Zanda, B. Lorand, J.-P., Göpel, C., Hewins, R., Pont, S., Lewin, E. , Quirico, E., Schmitt, B., Montes-Hernandez, G., Garenne, , Bonal, L., Proux, O., Hazemann, J.L., Chevrier, V.C.F., 2015. Hydration of the dark meteorite and the red planet? Earth Planet. Sci. Lett 427, 104-111.

Lorand, J.P. , Luguet, A., 2016. Chalcophile/siderophile elements in mantle rocks : trace elements controlled by trace minerals. Review in Mineralogy and Geochemistry 81, 441-488. (invited review paper)

Leroux, H., Jacob D., Marinova, M., Hewins, R.H., Zanda, B., Pont, S., Lorand, J.-P., Humayun, M. 2016. Exsolution and shock microstructures of igneous pyroxene clasts in the NWA 7533 Martian meteorite. Meteoritics & Planetary Sciences 51, 932–945.

Wainwright, A.N. , Luguet A, Schreiber, A.,Fonseca; R.O.C., Nowel G.M., Lorand, J.-P., Wirt R.A., Janney, P.E., 2016. Nanoscale variations in Os isotopic compositions and HSE systematics in a Bultfontein peridotite. Earth Planet. Sci. Lett, 447, 60-71.

Creech, J., Baker J.A., Handler MR, Lorand J.-P., Storey, M.Wainwright, A., Luguet, A., Moynier F., Bizzarro M 2017. Late accretion history of the terrestrial planets inferred from platinum stable isotopes. Geochemical Perspective Letter, 3, 94-104.

Hewins, R.H., Zanda, B., Humayun, M., Nemchin, A., Lorand, J.-P., Pont, S., Fini, C., Deldicque, D.,Jeremy J. Bellucci J., Beck P., Pierre Beck, Leroux H., Marinova M., Remusat, L, Göpel, C., Lewin, E., Grange, M. Kennedy A. and Whitehouse, M.J. 2017. Regolith breccia north west africa 7533: petrology and implications for early mars. Meteoritics and Planetary Science 52, 89-124.

Roperch, P. ; Gattacceca J. Valenzuela, M. Devouard B., Lorand, J.-P., Arriagada C. Rochette P. , Latore C and Beck P.. 2017. Fires caused late Pleistocene surface vitrification in the Atacama desert. Earth Planet. Sci. Lett. 469, 15-26.

Baumgartner, R., Fiorentini, M., Lorand J.-P., Baratoux, D., Zaccarini, F., Ferrière, L., Prasek, M. and Sener, K. 2017. The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites. Geochim. Cosmochim. Acta, 210, 1-24.

Bragnagni, A., Luguet, A., Fonseca, R.O.C., Pearson, D.G., Lorand, J.-P., Nowell, G.M. and Kjarsgaard, B.A., 2017. The geological record of Base Metal Sulfides in the cratonic mantle: A microscale Os study of xenoliths from Somerset Island, Rae Craton (Canada). Geochim. Cosmochim. Acta , HSE special volume 216, 264-285.

LorandJ.-P., Pont S., Chevrier, V., Luguet, A., Zanda, B., Hewins, R. H., 2018. Petrogenesis of martian sulfides in the Chassigny meteorite. Amer. Mineral., special issue "Planetary Sulfides" 103, 872-885.

Aertgeerts, G., Lorand J.-P., La C., Monnier, C., 2018. Petrogenesis of south Armorican serpentinised peridotites: mantle-derived remnants of oceanic lithosphere. Lithos 314-315, 100-118.

Lorand, J.-P., Hewins, R. H. Humayun, M., Zanda, B. Remusat L., La C., Pont S., 2018. Chalcophile-siderophile element systematics of hydrothermal pyrite from martian regolith breccia NWA 7533. Geochim. Cosmochim. Acta 241, 134-149 ( DOI : 10.1016/j.gca.2018.08.041).

Varas-Reus, M.I., Koenig, S., Yierpan, A., Lorand, J.-P., and Schoenberg, R., 2019. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nature GeoScience (12 Aout 2019), https://doi.org/10.1038/s41561-019-0414-7.

Baron, F., Gaudin, A., Lorand, J.-P., Mangold, N. 2019. New Constraints on Early Mars Weathering Conditions from an Experimental Approach on Crust Simulants. Journal of Geophysical Research (Planet), 124, 1783-1801, d.o.i 10.1029/2019JE005920.




 148 Articles in peer-reviewed journals (1983-2019): For a complete list contact me


Unreviewed papers (2012-2019)

 

Jean-Pierre Lorand & Serge Régnault, 2012. Charles Baret, le minéralogiste Nantais. Le Règne Minéral, n° 105, pp. 7-30.

Jean-Pierre Lorand, Serge Régnault, Pierre Watelet, 2012 «Deux siècles d’histoire de la Minéralogie au Muséum d’Histoire Naturelle de Nantes» Le Règne Minéral, n°105, pp. 34-35.

Jean-Pierre Lorand 2013. «Météorites SNC et sol martien : vers un chainon manquant?» Géochronique n°125, pp 15-16.

Jean-Pierre Lorand, Sylain Pont, Brigitte Zanda, 2013. «Des micropépites de métaux précieux dans la chondrite Paris; survivantes des premiers minéraux du système solaire. In «Les Cahiers du Règne Minéral», n°2 «Météorites Primitives». p. 50.

Carbalho, B., Lorand, J.P. et Rondeau, B. 2014. Prospection dans la vallée du Cens, Orvault, Loire Atlantique, Le Règne Minéral, 113, pp. 31-34.

Jean-Pierre Lorand 2014. Les cristaux géants, pp 99-105. in «Trésors de la terre». Artlis, Muséum national d’Histoire naturelle (eds).

Jean-Pierre Lorand 2014. «Alfred Lacroix (1863-1948)», P. 81. in «Trésors de la terre». Artlis, Muséum national d’Histoire naturelle (eds).

Jean-Pierre Lorand 2016. Promenade géologique à Nantes. Biotope, Mèze - MNHN Paris (collection Balades Géologiques), 38 pages.

Jean-Pierre Lorand 2016. Elements du groupe du platine: des éléments à part en cosmochimie et géochimie. Géochronique n° 139, 15-27.

Jean-Pierre Lorand 2018. Une collection nantaise centenaire refait surface. Le Règne Minéral n°139, pp 42-56.

Jean-Pierre Lorand, Bruneau Ducluzaux, Sylvain Pont 2018. Une nouvelle découverte de pépites de minéraux du groupe du platine (platine, osmium, iridium) en France : les cailloutis et alluvions de la Reyssouze (Ain). Le Règne Minéral, 143, pp. 5-16.

Jean-Pierre Lorand 2018. Platine et éléments associés : quelques élements de nomenclature. Le Règne Minéral 143, pp. 17.

Jean-Pierre Lorand. 2018. Des pépites de platine records. Le Règne Minéral 143, pp. 18-22.

Bouton, D, David J, Donini A, Guillet F et Guillet D, Guiraud, R, Leroux, C. Lorand, J.-P., Papillard, M., Regnault, S., et Viaud, J.-M., 2018. Carrière de Miséry, 500 ans d'histoire nantaise. 2018. Place publique / Société des sciences naturelles de l'Ouest de la France. 63 pages.

Unpublished reports for mining companies

Etude de l'anomalie d'antimoine de la carrière de Montlouis à Janzé (35). Rapport inédit demandé par Lafarge-Holcim Granulats. Rapport fourni en Janvier 2016 (inédit) de 10 pages.

Etude pétrographique et plan de repérage d’éventuels minéraux asbestiformes dans la carrière de basalte de la Bouvraie (Ingrandes, 49). Phase 2; société Hervé Granulats. Rapport fourni en Février 2017 (inédit) de 17 pages.

Identification et analyse des causes de l'oxydation des granulats de gabbros du Pallet. carrière de gabbros de Gorges (44), Décembre 2017 (Bureau d'étude Oolite SARL, 44). Rapport fourni en Février 2018 (inédit) de 4 pages

Etude pétrographique et plan de repérage d’éventuels minéraux asbestiformes dans la carrière de basalte de la Bouvraie (Ingrandes, 49). Phase 3 ; société Hervé Granulats. (Septembre 2018). Rapport fourni en Septembre 2018 (inédit) de 13 pages.

Links

http://www2.mnhn.fr/hdt/lherz/db/index.php

http://www.mnhn.fr/mnhn/mineralogie/histoire/index/historique

http://www2.mnhn.fr/hdt/lherz/bibliographie.ph